Search results
Results from the WOW.Com Content Network
It is one measure of how strongly an aircraft wants to fly "nose first", which is clearly very important. Stability derivatives, and also control derivatives, are measures of how particular forces and moments on an aircraft change as other parameters related to stability change (parameters such as airspeed, altitude, angle of attack, etc.). For ...
[7]: 8 If the center of gravity is aft of the neutral point, the static margin is negative. The greater the static margin, the more stable the aircraft will be. Most conventional aircraft have positive longitudinal stability, providing the aircraft's center of gravity lies within the approved range.
For a stable aircraft, if the aircraft pitches up, the wings and tail create a pitch-down moment which tends to restore the aircraft to its original attitude. For an unstable aircraft, a disturbance in pitch will lead to an increasing pitching moment. Longitudinal static stability is the ability of an aircraft to recover from an initial ...
The Static Margin can then be used to quantify the AC: = where: C n = yawing moment coefficient; C m = pitching moment coefficient; C l = rolling moment coefficient; C x = X-force ≈ Drag; C y = Y-force ≈ Side Force; C z = Z-force ≈ Lift; ref = reference point (about which moments were taken) c = reference length
Aircraft center of gravity calculations are only performed along a single axis from the zero point of the reference datum that represents the longitudinal axis of the aircraft (to calculate fore-to-aft balance). Some helicopter types utilize lateral CG limits as well as longitudinal limits.
Static stability is the ability of a robot to remain upright when at rest, or under acceleration and deceleration Static stability may also refer to: In aircraft or missiles: Static margin — a concept used to characterize the static stability and controllability of aircraft and missiles.
An angle-of-attack indicator for light aircraft, the "AlphaSystemsAOA" and a nearly identical "lift reserve indicator", are both pressure-differential instruments that display margin above stall and/or angle of attack on an instantaneous, continuous readout. The General Technics CYA-100 displays true angle of attack via a magnetically coupled vane.
The empennage of an Atlas Air Boeing 747-200. The empennage (/ ˌ ɑː m p ɪ ˈ n ɑː ʒ / or / ˈ ɛ m p ɪ n ɪ dʒ /), also known as the tail or tail assembly, is a structure at the rear of an aircraft that provides stability during flight, in a way similar to the feathers on an arrow.