enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mallows's Cp - Wikipedia

    en.wikipedia.org/wiki/Mallows's_Cp

    In statistics, Mallows's, [1] [2] named for Colin Lingwood Mallows, is used to assess the fit of a regression model that has been estimated using ordinary least squares.It is applied in the context of model selection, where a number of predictor variables are available for predicting some outcome, and the goal is to find the best model involving a subset of these predictors.

  3. Proofs involving ordinary least squares - Wikipedia

    en.wikipedia.org/wiki/Proofs_involving_ordinary...

    The connection of maximum likelihood estimation to OLS arises when this distribution is modeled as a multivariate normal. Specifically, assume that the errors ε have multivariate normal distribution with mean 0 and variance matrix σ 2 I. Then the distribution of y conditionally on X is

  4. Ordinary least squares - Wikipedia

    en.wikipedia.org/wiki/Ordinary_least_squares

    In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model (with fixed level-one [clarification needed] effects of a linear function of a set of explanatory variables) by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable (values ...

  5. Autoregressive moving-average model - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_moving...

    It is good practice to find the smallest values of p and q which provide an acceptable fit to the data. For a pure AR model, the Yule-Walker equations may be used to provide a fit. ARMA outputs are used primarily to forecast (predict), and not to infer causation as in other areas of econometrics and regression methods such as OLS and 2SLS.

  6. Robust regression - Wikipedia

    en.wikipedia.org/wiki/Robust_regression

    For ordinary least squares, the estimate of scale is 0.420, compared to 0.373 for the robust method. Thus, the relative efficiency of ordinary least squares to MM-estimation in this example is 1.266. This inefficiency leads to loss of power in hypothesis tests and to unnecessarily wide confidence intervals on estimated parameters.

  7. Autoregressive model - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_model

    There are four sources of uncertainty regarding predictions obtained in this manner: (1) uncertainty as to whether the autoregressive model is the correct model; (2) uncertainty about the accuracy of the forecasted values that are used as lagged values in the right side of the autoregressive equation; (3) uncertainty about the true values of ...

  8. Variance inflation factor - Wikipedia

    en.wikipedia.org/wiki/Variance_inflation_factor

    n: greater sample size results in proportionately less variance in the coefficient estimates ^ (): greater variability in a particular covariate leads to proportionately less variance in the corresponding coefficient estimate; The remaining term, 1 / (1 − R j 2) is the VIF. It reflects all other factors that influence the uncertainty in the ...

  9. Linear least squares - Wikipedia

    en.wikipedia.org/wiki/Linear_least_squares

    Linear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and generalized (correlated) residuals.