Search results
Results from the WOW.Com Content Network
A depth-first search ordering (not necessarily the lexicographic one), can be computed by a randomized parallel algorithm in the complexity class RNC. [14] As of 1997, it remained unknown whether a depth-first traversal could be constructed by a deterministic parallel algorithm, in the complexity class NC. [15]
For example, given a binary tree of infinite depth, a depth-first search will go down one side (by convention the left side) of the tree, never visiting the rest, and indeed an in-order or post-order traversal will never visit any nodes, as it has not reached a leaf (and in fact never will). By contrast, a breadth-first (level-order) traversal ...
The algorithm is a depth-first in-order tree traversal. Another perspective into why wall following works is topological. If the walls are connected, then they may be deformed into a loop or circle. [3] Then wall following reduces to walking around a circle from start to finish.
First, the computer creates a random planar graph G shown in blue, and its dual F shown in yellow. Second, the computer traverses F using a chosen algorithm, such as a depth-first search, coloring the path red. During the traversal, whenever a red edge crosses over a blue edge, the blue edge is removed.
Both the depth-first and breadth-first graph searches are adaptations of tree-based algorithms, distinguished primarily by the lack of a structurally determined "root" vertex and the addition of a data structure to record the traversal's visitation state.
Notably, given an infinite tree, [d] the corecursive breadth-first traversal will traverse all nodes, just as for a finite tree, while the recursive depth-first traversal will go down one branch and not traverse all nodes, and indeed if traversing post-order, as in this example (or in-order), it will visit no nodes at all, because it never ...
All together, an iterative deepening search from depth all the way down to depth expands only about % more nodes than a single breadth-first or depth-limited search to depth , when =. [ 4 ] The higher the branching factor, the lower the overhead of repeatedly expanded states, [ 1 ] : 6 but even when the branching factor is 2, iterative ...
If G is a tree, replacing the queue of this breadth-first search algorithm with a stack will yield a depth-first search algorithm. For general graphs, replacing the stack of the iterative depth-first search implementation with a queue would also produce a breadth-first search algorithm, although a somewhat nonstandard one. [10]