enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convolution - Wikipedia

    en.wikipedia.org/wiki/Convolution

    A similar result holds for compact groups (not necessarily abelian): the matrix coefficients of finite-dimensional unitary representations form an orthonormal basis in L 2 by the Peter–Weyl theorem, and an analog of the convolution theorem continues to hold, along with many other aspects of harmonic analysis that depend on the Fourier transform.

  3. Dirichlet convolution - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_convolution

    Dirichlet convolution is a special case of the convolution multiplication for the incidence algebra of a poset, in this case the poset of positive integers ordered by divisibility. The Dirichlet hyperbola method computes the summation of a convolution in terms of its functions and their summation functions.

  4. Convolution quotient - Wikipedia

    en.wikipedia.org/wiki/Convolution_quotient

    This fact makes it possible to define convolution quotients by saying that for two functions ƒ, g, the pair (ƒ, g) has the same convolution quotient as the pair (h * ƒ,h * g). As with the construction of the rational numbers from the integers, the field of convolution quotients is a direct extension of the convolution ring from which it was ...

  5. Convolution of probability distributions - Wikipedia

    en.wikipedia.org/wiki/Convolution_of_probability...

    The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.

  6. Titchmarsh convolution theorem - Wikipedia

    en.wikipedia.org/wiki/Titchmarsh_convolution_theorem

    The original proof by Titchmarsh uses complex-variable techniques, and is based on the Phragmén–Lindelöf principle, Jensen's inequality, Carleman's theorem, and Valiron's theorem. The theorem has since been proven several more times, typically using either real-variable [3] [4] [5] or complex-variable [6] [7] [8] methods.

  7. List of theorems - Wikipedia

    en.wikipedia.org/wiki/List_of_theorems

    No free lunch theorem (philosophy of mathematics) No-hair theorem ; No-trade theorem ; No wandering domain theorem (ergodic theory) Noether's theorem (Lie groups, calculus of variations, differential invariants, physics) Noether's second theorem (calculus of variations, physics)

  8. Discrete Fourier transform over a ring - Wikipedia

    en.wikipedia.org/wiki/Discrete_Fourier_transform...

    Most of the important attributes of the complex DFT, including the inverse transform, the convolution theorem, and most fast Fourier transform (FFT) algorithms, depend only on the property that the kernel of the transform is a principal root of unity. These properties also hold, with identical proofs, over arbitrary rings.

  9. Poisson summation formula - Wikipedia

    en.wikipedia.org/wiki/Poisson_summation_formula

    In mathematics, the Poisson summation formula is an equation that relates the Fourier series coefficients of the periodic summation of a function to values of the function's continuous Fourier transform. Consequently, the periodic summation of a function is completely defined by discrete samples of the original function's Fourier transform.