Search results
Results from the WOW.Com Content Network
In mathematics, for a function :, the image of an input value is the single output value produced by when passed . The preimage of an output value y {\displaystyle y} is the set of input values that produce y {\displaystyle y} .
The term antonym (and the related antonymy) is commonly taken to be synonymous with opposite, but antonym also has other more restricted meanings. Graded (or gradable) antonyms are word pairs whose meanings are opposite and which lie on a continuous spectrum (hot, cold).
In mathematics, a basis function is an element of a particular basis for a function space. Every function in the function space can be represented as a linear combination of basis functions, just as every vector in a vector space can be represented as a linear combination of basis vectors .
(For example, for a position vector of length meters, if all Cartesian basis vectors are changed from meters in length to meters in length, the length of the position vector remains unchanged at meters, although the vector components will all increase by a factor of ). The scalar product of a vector and a covector is invariant, because one has ...
It is an informal antonym for pathological. For example, one might conjecture that a differential operator ought to satisfy a certain boundedness condition "for nice test functions," or one might state that some interesting topological invariant should be computable "for nice spaces X." object
The method of images (or method of mirror images) is a mathematical tool for solving differential equations, in which boundary conditions are satisfied by combining a solution not restricted by the boundary conditions with its possibly weighted mirror image. Generally, original singularities are inside the domain of interest but the function is ...
This page will attempt to list examples in mathematics. To qualify for inclusion, an article should be about a mathematical object with a fair amount of concreteness. Usually a definition of an abstract concept, a theorem, or a proof would not be an "example" as the term should be understood here (an elegant proof of an isolated but particularly striking fact, as opposed to a proof of a ...
For example, the Euclidean topology on the plane admits as a base the set of all open rectangles with horizontal and vertical sides, and a nonempty intersection of two such basic open sets is also a basic open set. But another base for the same topology is the collection of all open disks; and here the full (B2) condition is necessary.