Search results
Results from the WOW.Com Content Network
Their subroutine instructions typically would save the current location in the jump address, and then set the program counter to the next address. [1] While this is simpler than maintaining a stack, since there is only one return location per subroutine code section, there cannot be recursion without considerable effort on the part of the ...
Some very early computers and microprocessors, such as the IBM 1620, the Intel 4004 and Intel 8008, and the PIC microcontrollers, have a single-instruction subroutine call that uses a dedicated hardware stack to store return addresses—such hardware supports only a few levels of subroutine nesting, but can support recursive subroutines.
A link register (LR for short) is a register which holds the address to return to when a subroutine call completes. This is more efficient than the more traditional scheme of storing return addresses on a call stack, sometimes called a machine stack. The link register does not require the writes and reads of the memory containing the stack ...
At function return, the stack pointer is instead restored to the frame pointer, the value of the stack pointer just before the function was called. Each stack frame contains a stack pointer to the top of the frame immediately below. The stack pointer is a mutable register shared between all invocations. A frame pointer of a given invocation of ...
For example, a function taking 5 integer arguments will take the first to fourth in registers, and the fifth will be pushed on top of the shadow space. So when the called function is entered, the stack will be composed of (in ascending order) the return address, followed by the shadow space (32 bytes) followed by the fifth parameter.
When shadow stacks are enabled, return addresses are pushed on both the regular stack and the shadow stack when a function call is made. They are then both popped on return from the function call – if they do not match, then the stack is assumed to be corrupted, and a #CP exception is issued.
The stack easily holds more than two inputs or more than one result, so a rich set of operations can be computed. In stack machine code (sometimes called p-code), instructions will frequently have only an opcode commanding an operation, with no additional fields identifying a constant, register or memory cell, known as a zero address format. [1]
Minimal instruction set computer (MISC) is a central processing unit (CPU) architecture, usually in the form of a microprocessor, with a very small number of basic operations and corresponding opcodes, together forming an instruction set. Such sets are commonly stack-based rather than register-based to reduce the size of operand specifiers.