enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Endergonic reaction - Wikipedia

    en.wikipedia.org/wiki/Endergonic_reaction

    The activation energy for the reaction is typically larger than the overall energy of the exergonic reaction (1). Endergonic reactions are nonspontaneous. The progress of the reaction is shown by the line. The change of Gibbs free energy (ΔG) during an endergonic reaction is a positive value because energy is gained (2).

  3. Bioenergetics - Wikipedia

    en.wikipedia.org/wiki/Bioenergetics

    An endergonic reaction is an anabolic chemical reaction that consumes energy. [3] It is the opposite of an exergonic reaction. It has a positive ΔG because it takes more energy to break the bonds of the reactant than the energy of the products offer, i.e. the products have weaker bonds than the reactants.

  4. Gibbs free energy - Wikipedia

    en.wikipedia.org/wiki/Gibbs_free_energy

    The reaction will only be allowed if the total entropy change of the universe is zero or positive. This is reflected in a negative ΔG, and the reaction is called an exergonic process. If two chemical reactions are coupled, then an otherwise endergonic reaction (one with positive ΔG) can be made to happen.

  5. Exergonic reaction - Wikipedia

    en.wikipedia.org/wiki/Exergonic_reaction

    The change of Gibbs free energy (ΔG) in an exergonic reaction (that takes place at constant pressure and temperature) is negative because energy is lost (2). In chemical thermodynamics, an exergonic reaction is a chemical reaction where the change in the free energy is negative (there is a net release of free energy). [1]

  6. Exergonic and endergonic reaction - Wikipedia

    en.wikipedia.org/wiki/Exergonic_and_endergonic...

    Related changes; Upload file; Special pages; Permanent link; Page information; Cite this page; ... For exergonic and endergonic reactions, see the separate articles:

  7. Exergonic process - Wikipedia

    en.wikipedia.org/wiki/Exergonic_process

    An exergonic process is one which there is a positive flow of energy from the system to the surroundings. This is in contrast with an endergonic process. [ 1 ] Constant pressure, constant temperature reactions are exergonic if and only if the Gibbs free energy change is negative (∆ G < 0).

  8. Activation energy - Wikipedia

    en.wikipedia.org/wiki/Activation_energy

    The total free energy change of a reaction is independent of the activation energy however. Physical and chemical reactions can be either exergonic or endergonic, but the activation energy is not related to the spontaneity of a reaction. The overall reaction energy change is not altered by the activation energy.

  9. Oxidative phosphorylation - Wikipedia

    en.wikipedia.org/wiki/Oxidative_phosphorylation

    The chain of redox reactions driving the flow of electrons through the electron transport chain, from electron donors such as NADH to electron acceptors such as oxygen and hydrogen (protons), is an exergonic process – it releases energy, whereas the synthesis of ATP is an endergonic process, which requires an input of energy.