enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Double factorial - Wikipedia

    en.wikipedia.org/wiki/Double_factorial

    In mathematics, the double factorial of a number n, denoted by n‼, is the product of all the positive integers up to n that have the same parity (odd or even) as n. [1] That is, n ! ! = ∏ k = 0 ⌈ n 2 ⌉ − 1 ( n − 2 k ) = n ( n − 2 ) ( n − 4 ) ⋯ . {\displaystyle n!!=\prod _{k=0}^{\left\lceil {\frac {n}{2}}\right\rceil -1}(n-2k ...

  3. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    The factorial of is , or in symbols, ! =. There are several motivations for this definition: For n = 0 {\displaystyle n=0} , the definition of n ! {\displaystyle n!} as a product involves the product of no numbers at all, and so is an example of the broader convention that the empty product , a product of no factors, is equal to the ...

  4. SymPy - Wikipedia

    en.wikipedia.org/wiki/SymPy

    SymPy is an open-source Python library for symbolic computation.It provides computer algebra capabilities either as a standalone application, as a library to other applications, or live on the web as SymPy Live [2] or SymPy Gamma. [3]

  5. APL syntax and symbols - Wikipedia

    en.wikipedia.org/wiki/APL_syntax_and_symbols

    These symbols were originally devised as a mathematical notation to describe algorithms. [1] APL programmers often assign informal names when discussing functions and operators (for example, "product" for ×/) but the core functions and operators provided by the language are denoted by non-textual symbols.

  6. 10,000,000 - Wikipedia

    en.wikipedia.org/wiki/10,000,000

    34,459,425 = double factorial of 17; 34,012,224 = 5832 2 = 324 3 = 18 6; 34,636,834 = number of 31-bead binary necklaces with beads of 2 colors where the colors may be swapped but turning over is not allowed [15] 35,153,041 = 5929 2 = 77 4

  7. Table of mathematical symbols by introduction date - Wikipedia

    en.wikipedia.org/wiki/Table_of_mathematical...

    The following table lists many specialized symbols commonly used in modern mathematics, ordered by their introduction date. The table can also be ordered alphabetically by clicking on the relevant header title.

  8. Orthogonal array - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_Array

    In mathematics, an orthogonal array (more specifically, a fixed-level orthogonal array) is a "table" (array) whose entries come from a fixed finite set of symbols (for example, {1,2,...,v}), arranged in such a way that there is an integer t so that for every selection of t columns of the table, all ordered t-tuples of the symbols, formed by taking the entries in each row restricted to these ...

  9. Glossary of mathematical symbols - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_mathematical...

    1. Factorial: if n is a positive integer, n! is the product of the first n positive integers, and is read as "n factorial". 2. Double factorial: if n is a positive integer, n!! is the product of all positive integers up to n with the same parity as n, and is read as "the double factorial of n". 3.