enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Measurable function - Wikipedia

    en.wikipedia.org/wiki/Measurable_function

    A Lebesgue measurable function is a measurable function : (,) (,), where is the -algebra of Lebesgue measurable sets, and is the Borel algebra on the complex numbers. Lebesgue measurable functions are of interest in mathematical analysis because they can be integrated.

  3. Lp space - Wikipedia

    en.wikipedia.org/wiki/Lp_space

    In mathematics, the L p spaces are function spaces defined using a natural generalization of the p-norm for finite-dimensional vector spaces.They are sometimes called Lebesgue spaces, named after Henri Lebesgue (Dunford & Schwartz 1958, III.3), although according to the Bourbaki group (Bourbaki 1987) they were first introduced by Frigyes Riesz ().

  4. Locally integrable function - Wikipedia

    en.wikipedia.org/wiki/Locally_integrable_function

    Measure and integration (as the English translation of the title reads) is a definitive monograph on integration and measure theory: the treatment of the limiting behavior of the integral of various kind of sequences of measure-related structures (measurable functions, measurable sets, measures and their combinations) is somewhat conclusive.

  5. Vitali convergence theorem - Wikipedia

    en.wikipedia.org/wiki/Vitali_convergence_theorem

    Let (,,) be a measure space, i.e. : [,] is a set function such that () = and is countably-additive. All functions considered in the sequel will be functions :, where = or .We adopt the following definitions according to Bogachev's terminology.

  6. Lebesgue measure - Wikipedia

    en.wikipedia.org/wiki/Lebesgue_measure

    If A is a Lebesgue-measurable set with λ(A) = 0 (a null set), then every subset of A is also a null set. A fortiori, every subset of A is measurable. If A is Lebesgue-measurable and x is an element of R n, then the translation of A by x, defined by A + x = {a + x : a ∈ A}, is also Lebesgue-measurable and has the same measure as A.

  7. Hölder's inequality - Wikipedia

    en.wikipedia.org/wiki/Hölder's_inequality

    This is also called Cauchy–Schwarz inequality, but requires for its statement that ‖ f ‖ 2 and ‖ g ‖ 2 are finite to make sure that the inner product of f and g is well defined. We may recover the original inequality (for the case p = 2) by using the functions | f | and | g | in place of f and g.

  8. Lebesgue integral - Wikipedia

    en.wikipedia.org/wiki/Lebesgue_integral

    One approach to constructing the Lebesgue integral is to make use of so-called simple functions: finite, real linear combinations of indicator functions. Simple functions that lie directly underneath a given function f can be constructed by partitioning the range of f into a finite number of layers.

  9. Function space - Wikipedia

    en.wikipedia.org/wiki/Function_space

    Let F be a field and let X be any set. The functions X → F can be given the structure of a vector space over F where the operations are defined pointwise, that is, for any f, g : X → F, any x in X, and any c in F, define (+) = + () = When the domain X has additional structure, one might consider instead the subset (or subspace) of all such functions which respect that structure.