Search results
Results from the WOW.Com Content Network
A Lebesgue measurable function is a measurable function : (,) (,), where is the -algebra of Lebesgue measurable sets, and is the Borel algebra on the complex numbers. Lebesgue measurable functions are of interest in mathematical analysis because they can be integrated.
In mathematics, the L p spaces are function spaces defined using a natural generalization of the p-norm for finite-dimensional vector spaces.They are sometimes called Lebesgue spaces, named after Henri Lebesgue (Dunford & Schwartz 1958, III.3), although according to the Bourbaki group (Bourbaki 1987) they were first introduced by Frigyes Riesz ().
The problem is a differential equation of the form [()] + = for an unknown function y on an interval [a, b], satisfying general homogeneous Robin boundary conditions {() + ′ ′ = + ′ ′ =. The functions p, q, and w are given in advance, and the problem is to find the function y and constants λ for which the equation has a solution.
Measure and integration (as the English translation of the title reads) is a definitive monograph on integration and measure theory: the treatment of the limiting behavior of the integral of various kind of sequences of measure-related structures (measurable functions, measurable sets, measures and their combinations) is somewhat conclusive.
Layer cake representation. In mathematics, the layer cake representation of a non-negative, real-valued measurable function defined on a measure space (,,) is the formula = (,) (),
A main area of study in invariant descriptive set theory is the relative complexity of equivalence relations. An equivalence relation on a set is considered more complex than an equivalence relation on a set if one can "compute using " - formally, if there is a function : which is well behaved in some sense (for example, one often requires that is Borel measurable) such that ,: ().
Unlike the multiplication-operator version of the spectral theorem, the direct-integral version is unique in the sense that the measure equivalence class of μ (or equivalently its sets of measure 0) is uniquely determined and the measurable function () is determined almost everywhere with respect to μ. [36]
Uniform integrability is an extension to the notion of a family of functions being dominated in which is central in dominated convergence. Several textbooks on real analysis and measure theory use the following definition: [1] [2] Definition A: Let (,,) be a positive measure space.