Search results
Results from the WOW.Com Content Network
Superheated steam was widely used in main line steam locomotives. Saturated steam has three main disadvantages in a steam engine: it contains small droplets of water which have to be periodically drained from the cylinders; being precisely at the boiling point of water for the boiler pressure in use, it inevitably condenses to some extent in the steam pipes and cylinders outside the boiler ...
For the bubble to expand, the temperature must be raised slightly above the boiling point to generate enough vapor pressure to overcome both surface tension and ambient pressure. What makes superheating so explosive is that a larger bubble is easier to inflate than a small one; just as when blowing up a balloon, the hardest part is getting started.
T is the absolute temperature, measured in kelvins (= degrees Celsius + 273.15) [S] i is the intracellular concentration of ion S, measured in mol·m −3 or mmol·l −1 [S] o is the extracellular concentration of ion S, measured in mol·m −3
The process 3–4 in a Rankine cycle is isentropic when the steam turbine is said to be an ideal one. So the expansion process in a turbine can be easily calculated using the h–s chart when the process is considered to be ideal (which is the case normally when calculating enthalpies, entropies, etc.
A superheater is a device used to convert saturated steam or wet steam into superheated steam or dry steam. Superheated steam is used in steam turbines for electricity generation, in some steam engines, and in processes such as steam reforming. There are three types of superheaters: radiant, convection, and separately fired.
Supercooled water, still in liquid state Start of solidification as a result of leaving the state of rest. Supercooling, [1] also known as undercooling, [2] [3] is the process of lowering the temperature of a liquid below its freezing point without it becoming a solid.
A unit increment of one kelvin is exactly 1.8 times one degree Rankine; thus, to convert a specific temperature on the Kelvin scale to the Rankine scale, x K = 1.8 x °R, and to convert from a temperature on the Rankine scale to the Kelvin scale, x °R = x /1.8 K. Consequently, absolute zero is "0" for both scales, but the melting point of ...
The Carnot cycle achieves maximum efficiency because all the heat is added to the working fluid at the maximum temperature , and removed at the minimum temperature . In contrast, in an internal combustion engine, the temperature of the fuel-air mixture in the cylinder is nowhere near its peak temperature as the fuel starts to burn, and only ...