Search results
Results from the WOW.Com Content Network
Humans use biological motion to identify and understand familiar actions, which is involved in the neural processes for empathy, communication, and understanding other's intentions. The neural network for biological motion is highly sensitive to the observer's prior experience with the action's biological motions, allowing for embodied learning.
Run-and-tumble motion is a movement pattern exhibited by certain bacteria and other microscopic agents. It consists of an alternating sequence of "runs" and "tumbles": during a run, the agent propels itself in a fixed (or slowly varying) direction, and during a tumble, it remains stationary while it reorients itself in preparation for the next run.
Motility also includes physiological processes like gastrointestinal movements and peristalsis. Understanding motility is important in biology, medicine, and ecology, as it impacts processes ranging from bacterial behavior to ecosystem dynamics.
Bacterial gliding is a process of motility whereby a bacterium can move under its own power. Generally, the process occurs whereby the bacterium moves along a surface in the general direction of its long axis. [5] Gliding may occur via distinctly different mechanisms, depending on the type of bacterium.
Stride range of motion: the leg's integrated path between stance onset and swing offset. Joint angles: Walking can also be quantified through the analysis of joint angles. [ 10 ] [ 11 ] [ 12 ] During legged locomotion, an animal flexes and extends its joints in an oscillatory manner, creating a joint angle pattern that repeats across steps.
The exception to this is the flagellum, the only known example of a freely rotating propulsive system in biology; in the evolution of flagella, individual components were recruited from older structures, where they performed tasks unrelated to propulsion. The basal body that is now the rotary motor, for instance, might have evolved from a ...
Molecular diffusion, often simply called diffusion, is the thermal motion of all (liquid or gas) particles at temperatures above absolute zero. The rate of this movement is a function of temperature, viscosity of the fluid and the size (mass) of the particles.
A ribosome is a biological machine that utilizes protein dynamics. Molecular biophysics is a rapidly evolving interdisciplinary area of research that combines concepts in physics, chemistry, engineering, mathematics and biology. [1]