Search results
Results from the WOW.Com Content Network
The system defines virtual processors and virtual operations (VOPs). VOPs decompose into one or more high-level operations (HLOPs). It then distributes the operations across the processors. The runtime system then dynamically maps virtual processors to physical processors, assessing resource availability in order to keep all the processors busy.
Download as PDF; Printable version; ... Pages in category "Parallel computing" ... Parallel Virtual Machine; Parallelization contract;
Applications for this architecture are much less common than MIMD and SIMD, as the latter two are often more appropriate for common data parallel techniques. Specifically, they allow better scaling and use of computational resources. However, one prominent example of MISD in computing are the Space Shuttle flight control computers. [2]
YUCCA is a Sequential to Parallel automatic code conversion tool developed by KPIT Technologies Ltd. Pune. It takes input as C source code which may have multiple source and header files. It gives output as transformed multi-threaded parallel code using pthreads functions and OpenMP constructs. The YUCCA tool does task and loop level ...
The parallel random-access machine [10] The actor model; Computational bridging models such as the bulk synchronous parallel (BSP) model; Petri nets; Process calculi. Calculus of communicating systems (CCS) Communicating sequential processes (CSP) model; π-calculus; Tuple spaces, e.g., Linda; Simple Concurrent Object-Oriented Programming (SCOOP)
Parallel processing of compute-intensive applications typically involves parallelizing individual algorithms within an application process, and decomposing the overall application process into separate tasks, which can then be executed in parallel on an appropriate computing platform to achieve overall higher performance than serial processing.
The opportunity for loop-level parallelism often arises in computing programs where data is stored in random access data structures. Where a sequential program will iterate over the data structure and operate on indices one at a time, a program exploiting loop-level parallelism will use multiple threads or processes which operate on some or all ...
Atanasoff–Berry computer, the first computer with parallel processing [1] Instruction-level parallelism (ILP) is the parallel or simultaneous execution of a sequence of instructions in a computer program. More specifically, ILP refers to the average number of instructions run per step of this parallel execution. [2]: 5