Search results
Results from the WOW.Com Content Network
In other words, zeta potential is the potential difference between the dispersion medium and the stationary layer of fluid attached to the dispersed particle. The zeta potential is caused by the net electrical charge contained within the region bounded by the slipping plane, and also depends on the location of that plane .
Sedimentation potential is measured by attaching electrodes to a glass column filled with the dispersion of interest. A voltmeter is attached to measure the potential generated from the suspension. To account for different geometries of the electrode, the column is typically rotated 180 degrees while measuring the potential.
Given a potential energy function, the radial distribution function can be computed either via computer simulation methods like the Monte Carlo method, or via the Ornstein–Zernike equation, using approximative closure relations like the Percus–Yevick approximation or the hypernetted-chain theory. It can also be determined experimentally, by ...
In 1923, Peter Debye and Erich Hückel reported the first successful theory for the distribution of charges in ionic solutions. [7] The framework of linearized Debye–Hückel theory subsequently was applied to colloidal dispersions by S. Levine and G. P. Dube [8] [9] who found that charged colloidal particles should experience a strong medium-range repulsion and a weaker long-range attraction.
Given the dispersion relation, one can calculate the frequency-dependent phase velocity and group velocity of each sinusoidal component of a wave in the medium, as a function of frequency. In addition to the geometry-dependent and material-dependent dispersion relations, the overarching Kramers–Kronig relations describe the frequency ...
Multiple light scattering coupled with vertical scanning is one of many techniques monitor the dispersion state of a product, identifying and quantifying destabilisation phenomena. [2] [3] [4] It works on concentrated dispersions without dilution. When light is sent through the sample, it is backscattered by the particles / droplets.
The phenomenon of a frequency-dependent permittivity is an example of material dispersion. In fact, all physical materials have some material dispersion because they cannot respond instantaneously to applied fields, but for many problems (those concerned with a narrow enough bandwidth ) the frequency-dependence of ε can be neglected.
The screened potential determines the inter atomic force and the phonon dispersion relation in metals. The screened potential is used to calculate the electronic band structure of a large variety of materials, often in combination with pseudopotential models.