enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Predicate functor logic - Wikipedia

    en.wikipedia.org/wiki/Predicate_functor_logic

    Translate the matrices of the most deeply nested quantifiers into disjunctive normal form, consisting of disjuncts of conjuncts of terms, negating atomic terms as required. The resulting subformula contains only negation, conjunction, disjunction, and existential quantification.

  3. Quantifier (logic) - Wikipedia

    en.wikipedia.org/wiki/Quantifier_(logic)

    In logic, a quantifier is an operator that specifies how many individuals in the domain of discourse satisfy an open formula.For instance, the universal quantifier in the first order formula () expresses that everything in the domain satisfies the property denoted by .

  4. Von Neumann–Bernays–Gödel set theory - Wikipedia

    en.wikipedia.org/wiki/Von_Neumann–Bernays...

    Bound variables within nested quantifiers are handled by increasing the subscript by one for each successive quantifier. This leads to rule 4, which must be applied after the other rules since rules 1 and 2 produce quantified variables.

  5. Monadic second-order logic - Wikipedia

    en.wikipedia.org/wiki/Monadic_second-order_logic

    The first-order quantifiers are not restricted. By analogy to Fagin's theorem , according to which existential (non-monadic) second-order logic captures precisely the descriptive complexity of the complexity class NP , the class of problems that may be expressed in existential monadic second-order logic has been called monadic NP.

  6. Quantifier rank - Wikipedia

    en.wikipedia.org/wiki/Quantifier_rank

    In mathematical logic, the quantifier rank of a formula is the depth of nesting of its quantifiers. It plays an essential role in model theory . Notice that the quantifier rank is a property of the formula itself (i.e. the expression in a language).

  7. Satisfiability modulo theories - Wikipedia

    en.wikipedia.org/wiki/Satisfiability_modulo_theories

    In computer science and mathematical logic, satisfiability modulo theories (SMT) is the problem of determining whether a mathematical formula is satisfiable.It generalizes the Boolean satisfiability problem (SAT) to more complex formulas involving real numbers, integers, and/or various data structures such as lists, arrays, bit vectors, and strings.

  8. Counting quantification - Wikipedia

    en.wikipedia.org/wiki/Counting_quantification

    A counting quantifier is a mathematical term for a quantifier of the form "there exists at least k elements that satisfy property X". In first-order logic with equality, counting quantifiers can be defined in terms of ordinary quantifiers, so in this context they are a notational shorthand.

  9. Conditional quantifier - Wikipedia

    en.wikipedia.org/wiki/Conditional_quantifier

    For example, the quantifier ∀ A, which can be viewed as set-theoretic inclusion, satisfies all of the above except [symmetry]. Clearly [symmetry] holds for ∃ A while e.g. [contraposition] fails. A semantic interpretation of conditional quantifiers involves a relation between sets of subsets of a given structure—i.e. a relation between ...