enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Coefficient - Wikipedia

    en.wikipedia.org/wiki/Coefficient

    So, for example, in the matrix (), the leading coefficient of the first row is 1; that of the second row is 2; that of the third row is 4, while the last row does not have a leading coefficient. Though coefficients are frequently viewed as constants in elementary algebra, they can also be viewed as variables as the context broadens.

  3. Limit of a function - Wikipedia

    en.wikipedia.org/wiki/Limit_of_a_function

    If the degree of p is greater than the degree of q, then the limit is positive or negative infinity depending on the signs of the leading coefficients; If the degree of p and q are equal, the limit is the leading coefficient of p divided by the leading coefficient of q; If the degree of p is less than the degree of q, the limit is 0.

  4. Sturm's theorem - Wikipedia

    en.wikipedia.org/wiki/Sturm's_theorem

    The theorem extends to unbounded intervals by defining the sign at +∞ of a polynomial as the sign of its leading coefficient (that is, the coefficient of the term of highest degree). At –∞ the sign of a polynomial is the sign of its leading coefficient for a polynomial of even degree, and the opposite sign for a polynomial of odd degree.

  5. Cubic equation - Wikipedia

    en.wikipedia.org/wiki/Cubic_equation

    The discriminant Δ of the cubic is the square of = () (), where a is the leading coefficient of the cubic, and r 1, r 2 and r 3 are the three roots of the cubic. As Δ {\displaystyle {\sqrt {\Delta }}} changes of sign if two roots are exchanged, Δ {\displaystyle {\sqrt {\Delta }}} is fixed by the Galois group only if the Galois group is A 3 .

  6. Descartes' rule of signs - Wikipedia

    en.wikipedia.org/wiki/Descartes'_rule_of_signs

    To find the number of negative roots, change the signs of the coefficients of the terms with odd exponents, i.e., apply Descartes' rule of signs to the polynomial = + + This polynomial has two sign changes, as the sequence of signs is (−, +, +, −) , meaning that this second polynomial has two or zero positive roots; thus the original ...

  7. Sign function - Wikipedia

    en.wikipedia.org/wiki/Sign_function

    Signum function = ⁡. In mathematics, the sign function or signum function (from signum, Latin for "sign") is a function that has the value −1, +1 or 0 according to whether the sign of a given real number is positive or negative, or the given number is itself zero.

  8. Monic polynomial - Wikipedia

    en.wikipedia.org/wiki/Monic_polynomial

    Here are some examples. Every polynomial is associated to a unique monic polynomial. In particular, the unique factorization property of polynomials can be stated as: Every polynomial can be uniquely factorized as the product of its leading coefficient and a product of monic irreducible polynomials.

  9. Factorization of polynomials - Wikipedia

    en.wikipedia.org/wiki/Factorization_of_polynomials

    This factorization is unique up to the sign of the content. It is a usual convention to choose the sign of the content such that the leading coefficient of the primitive part is positive. For example, + + = () is a factorization into content and primitive part.