Search results
Results from the WOW.Com Content Network
Introduction to Smooth Manifolds. Graduate Texts in Mathematics. Vol. 218 (Second ed.). New York London: Springer-Verlag. ISBN 978-1-4419-9981-8. OCLC 808682771. Introduction to Smooth Manifolds, Springer-Verlag, Graduate Texts in Mathematics, 2002, 2nd edition 2012 [6] Fredholm Operators and Einstein Metrics on Conformally Compact Manifolds.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
Lee, John M., Introduction to Smooth Manifolds, Springer-Verlag, New York (2003) ISBN 0-387-95495-3.Graduate-level textbook on smooth manifolds. Hwa-Chung, Lee, "The Universal Integral Invariants of Hamiltonian Systems and Application to the Theory of Canonical Transformations", Proceedings of the Royal Society of Edinburgh.
A relatively 'easy' result is to prove that any two embeddings of a 1-manifold into are isotopic (see Knot theory#Higher dimensions). This is proved using general position, which also allows to show that any two embeddings of an n-manifold into + are isotopic. This result is an isotopy version of the weak Whitney embedding theorem.
Lee, John M. (2003). Introduction to smooth manifolds. New York: Springer. ISBN 0-387-95448-1. A textbook on manifold theory. See also the same author's textbooks on topological manifolds (a lower level of structure) and Riemannian geometry (a higher level of structure).
Sergei Novikov generalized this construction to a homology theory associated to a closed one-form on a manifold. Morse homology is a special case for the one-form df. A special case of Novikov's theory is circle-valued Morse theory, which Michael Hutchings and Yi-Jen Lee have connected to Reidemeister torsion and Seiberg–Witten theory.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Theorem: Every smooth manifold admits a (non-canonical) Riemannian metric. [13] This is a fundamental result. Although much of the basic theory of Riemannian metrics can be developed using only that a smooth manifold is a locally Euclidean topological space, for this result it is necessary to use that smooth manifolds are Hausdorff and paracompact.