Search results
Results from the WOW.Com Content Network
Following the Pauli exclusion principle, there can be only one fermion occupying each quantum state. In a degenerate gas, all quantum states are filled up to the Fermi energy. Most stars are supported against their own gravitation by normal thermal gas pressure, while in white dwarf stars the supporting force comes from the degeneracy pressure ...
Sirius B, which is a white dwarf, can be seen as a faint point of light to the lower left of the much brighter Sirius A. A white dwarf is a stellar core remnant composed mostly of electron-degenerate matter. A white dwarf is very dense: in an Earth sized volume, it packs a mass that is comparable to the Sun.
From the quantum statistics of a completely degenerate electron gas (all the lowest quantum states are occupied), the pressure and the density of a white dwarf are calculated in terms of the maximum electron momentum standardized as = /, with pressure = and density =, where
In white dwarf stars, the positive nuclei are completely ionized – disassociated from the electrons – and closely packed – a million times more dense than the Sun. At this density gravity exerts immense force pulling the nuclei together. This force is balanced by the electron degeneracy pressure keeping the star stable. [4]
As they cool they will redden and dim until they eventually become dark black dwarfs. White dwarfs were observed in the 19th century, but the extremely high densities and pressures they contain were not explained until the 1920s. The equation of state for degenerate matter is "soft", meaning that adding more mass will result in a smaller object ...
The concept of universal wavefunction was introduced by Hugh Everett in his 1956 PhD thesis draft The Theory of the Universal Wave Function. [8] It later received investigation from James Hartle and Stephen Hawking [9] who derived the Hartle–Hawking solution to the Wheeler–deWitt equation to explain the initial conditions of the Big Bang ...
The universe will become extremely dark after the last stars burn out. Even so, there can still be occasional light in the universe. One of the ways the universe can be illuminated is if two carbon–oxygen white dwarfs with a combined mass of more than the Chandrasekhar limit of about 1.4 solar masses happen
White dwarfs resist gravitational collapse primarily through electron degeneracy pressure, compared to main sequence stars, which resist collapse through thermal pressure. The Chandrasekhar limit is the mass above which electron degeneracy pressure in the star's core is insufficient to balance the star's own gravitational self-attraction.