Search results
Results from the WOW.Com Content Network
The greater-than sign is a mathematical symbol that denotes an inequality between two values. The widely adopted form of two equal-length strokes connecting in an acute angle at the right, >, has been found in documents dated as far back as 1631. [1]
The relation not greater than can also be represented by , the symbol for "greater than" bisected by a slash, "not". The same is true for not less than , a ≮ b . {\displaystyle a\nless b.} The notation a ≠ b means that a is not equal to b ; this inequation sometimes is considered a form of strict inequality. [ 4 ]
1. Means "less than or equal to". That is, whatever A and B are, A ≤ B is equivalent to A < B or A = B. 2. Between two groups, may mean that the first one is a subgroup of the second one. ≥ 1. Means "greater than or equal to". That is, whatever A and B are, A ≥ B is equivalent to A > B or A = B. 2.
unstrict inequality signs (less-than or equals to sign and greater-than or equals to sign) 1670 (with the horizontal bar over the inequality sign, rather than below it) John Wallis: 1734 (with double horizontal bar below the inequality sign) Pierre Bouguer
Mathematical Operators is a Unicode block containing characters for mathematical, logical, and set notation.. Notably absent are the plus sign (+), greater than sign (>) and less than sign (<), due to them already appearing in the Basic Latin Unicode block, and the plus-or-minus sign (±), multiplication sign (×) and obelus (÷), due to them already appearing in the Latin-1 Supplement block ...
A number is non-negative if it is greater than or equal to zero. A number is non-positive if it is less than or equal to zero. When 0 is said to be both positive and negative, [citation needed] modified phrases are used to refer to the sign of a number: A number is strictly positive if it is greater than zero.
Note that any inequality containing a "greater than" or a "greater than or equal" sign can be rewritten with a "less than" or "less than or equal" sign, so there is no need to define linear inequalities using those signs.
In mathematics, particularly in order theory, an upper bound or majorant [1] of a subset S of some preordered set (K, ≤) is an element of K that is greater than or equal to every element of S. [2] [3] Dually, a lower bound or minorant of S is defined to be an element of K that is less than or equal to every element of S.