Search results
Results from the WOW.Com Content Network
Logo of Eurocode 2 An example of a concrete structure. In the Eurocode series of European standards (EN) related to construction, Eurocode 2: Design of concrete structures (abbreviated EN 1992 or, informally, EC 2) specifies technical rules for the design of concrete, reinforced concrete and prestressed concrete structures, using the limit state design philosophy.
A concrete slab is a common structural element of modern buildings, consisting of a flat, horizontal surface made of cast concrete. Steel- reinforced slabs, typically between 100 and 500 mm thick, are most often used to construct floors and ceilings, while thinner mud slabs may be used for exterior paving ( see below ).
Waffle slabs are preferred for spans greater than 40 feet (12 m), because, for a given mass of concrete, they are much stronger than flat slabs, flat slabs with drop panels, two-way slabs, one-way slabs, and one-way joist slabs. [2] Section of a waffle slab including beam, ribs, and column head
Beam and block is a construction method to support flooring, especially for ground floors as well as multi story buildings. [1] It is made of cast concrete , one piece of which is a prestressed concrete beam , which can be an inverted T-shaped beam, or lintel, the other piece being a simple rectangular block. [ 1 ]
In engineering, span is the distance between two adjacent structural supports (e.g., two piers) of a structural member (e.g., a beam). Span is measured in the horizontal direction either between the faces of the supports ( clear span ) or between the centers of the bearing surfaces ( effective span ): [ 1 ]
A benefit of pre-topped double tees is a higher quality concrete for more durable surface to reduce traffic wears. Factories can produce the topping with minimum concrete strength of 5,000 psi. In some areas, the strength can be 6,000-8,000 psi. This compares to the field-placed concrete topping with the lower concrete strength of 4,000 psi. [6]
Unlike an I-beam, a T-beam lacks a bottom flange, which carries savings in terms of materials, but at the loss of resistance to tensile forces. [5] T- beam designs come in many sizes, lengths and widths to suit where they are to be used (eg highway bridge, underground parking garage) and how they have to resist the tension, compression and shear stresses associated with beam bending in their ...
Strengths above 40 MPa (5,800 psi) are often used for specific building elements. For example, the lower floor columns of high-rise concrete buildings may use concrete of 80 MPa (11,600 psi) or more, to keep the size of the columns small. Bridges may use long beams of high-strength concrete to lower the number of spans required.