enow.com Web Search

  1. Ad

    related to: smooth map between manifolds and differential equations

Search results

  1. Results from the WOW.Com Content Network
  2. Maps of manifolds - Wikipedia

    en.wikipedia.org/wiki/Maps_of_manifolds

    Just as there are various types of manifolds, there are various types of maps of manifolds. PDIFF serves to relate DIFF and PL, and it is equivalent to PL.. In geometric topology, the basic types of maps correspond to various categories of manifolds: DIFF for smooth functions between differentiable manifolds, PL for piecewise linear functions between piecewise linear manifolds, and TOP for ...

  3. Pushforward (differential) - Wikipedia

    en.wikipedia.org/wiki/Pushforward_(differential)

    Suppose that : is a smooth map between smooth manifolds; then the differential of at a point , denoted , is, in some sense, the best linear approximation of near . It can be viewed as a generalization of the total derivative of ordinary calculus.

  4. Sobolev mapping - Wikipedia

    en.wikipedia.org/wiki/Sobolev_mapping

    In mathematics, a Sobolev mapping is a mapping between manifolds which has smoothness in some sense. Sobolev mappings appear naturally in manifold-constrained problems in the calculus of variations and partial differential equations, including the theory of harmonic maps. [1] [2] [3]

  5. Smoothness - Wikipedia

    en.wikipedia.org/wiki/Smoothness

    Smooth maps between manifolds induce linear maps between tangent spaces: for :, at each point the pushforward (or differential) maps tangent vectors at to tangent vectors at (): ,: (), and on the level of the tangent bundle, the pushforward is a vector bundle homomorphism: :.

  6. Differentiable manifold - Wikipedia

    en.wikipedia.org/wiki/Differentiable_manifold

    Many otherwise familiar examples of smooth manifolds, however, cannot be given a Lie group structure, since given a Lie group and any , one could consider the map (,): which sends the identity element to and hence, by considering the differential , gives a natural identification between any two tangent spaces of a Lie group.

  7. Pullback (differential geometry) - Wikipedia

    en.wikipedia.org/wiki/Pullback_(differential...

    When the map between manifolds is a diffeomorphism, that is, it has a smooth inverse, then pullback can be defined for the vector fields as well as for 1-forms, and thus, by extension, for an arbitrary mixed tensor field on the manifold. The linear map = ⁡ (, ())

  8. Local diffeomorphism - Wikipedia

    en.wikipedia.org/wiki/Local_diffeomorphism

    A map is a local diffeomorphism if and only if it is a smooth immersion (smooth local embedding) and an open map. The inverse function theorem implies that a smooth map f : X → Y {\displaystyle f:X\to Y} is a local diffeomorphism if and only if the derivative D f x : T x X → T f ( x ) Y {\displaystyle Df_{x}:T_{x}X\to T_{f(x)}Y} is a linear ...

  9. Harmonic map - Wikipedia

    en.wikipedia.org/wiki/Harmonic_map

    In the mathematical field of differential geometry, a smooth map between Riemannian manifolds is called harmonic if its coordinate representatives satisfy a certain nonlinear partial differential equation. This partial differential equation for a mapping also arises as the Euler-Lagrange equation of a functional called the Dirichlet energy.

  1. Ad

    related to: smooth map between manifolds and differential equations