enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quantum dot - Wikipedia

    en.wikipedia.org/wiki/Quantum_dot

    Splitting of energy levels for small quantum dots due to the quantum confinement effect. The horizontal axis is the radius, or the size, of the quantum dots and a b * is the exciton's Bohr radius. Band gap energy The band gap can become smaller in the strong confinement regime as the energy levels split up. The exciton Bohr radius can be ...

  3. Energy level - Wikipedia

    en.wikipedia.org/wiki/Energy_level

    If it is at a higher energy level, it is said to be excited, or any electrons that have higher energy than the ground state are excited. Such a species can be excited to a higher energy level by absorbing a photon whose energy is equal to the energy difference between the levels. Conversely, an excited species can go to a lower energy level by ...

  4. Degenerate energy levels - Wikipedia

    en.wikipedia.org/wiki/Degenerate_energy_levels

    For an N-particle system in three dimensions, a single energy level may correspond to several different wave functions or energy states. These degenerate states at the same level all have an equal probability of being filled. The number of such states gives the degeneracy of a particular energy level. Degenerate states in a quantum system

  5. Jaynes–Cummings model - Wikipedia

    en.wikipedia.org/wiki/Jaynes–Cummings_model

    Illustration of the Jaynes–Cummings model. An atom in an optical cavity is shown as red dot on the top left. The energy levels of the atom that couple to the field mode within the cavity are shown in the circle on the bottom right. Transfer between the two states causes photon emission (absorption) by the atom into (out of) the cavity mode.

  6. Brus equation - Wikipedia

    en.wikipedia.org/wiki/Brus_equation

    The Brus equation or confinement energy equation can be used to describe the emission energy of quantum dot semiconductor nanocrystals in terms of the band gap energy E gap, the Planck constant h, the radius of the quantum dot r, as well as the effective mass of the excited electron m e * and of the excited hole m h *.

  7. Quantum dot single-photon source - Wikipedia

    en.wikipedia.org/wiki/Quantum_dot_single-photon...

    Since a quantum dot has discrete energy levels, it can be achieved that there is never more than one exciton in the quantum dot simultaneously. Therefore, the quantum dot is an emitter of single photons. A key challenge in making a good single-photon source is to make sure that the emission from the quantum dot is collected efficiently.

  8. Atomic orbital - Wikipedia

    en.wikipedia.org/wiki/Atomic_orbital

    For example, the orbital 1s (pronounced as the individual numbers and letters: "'one' 'ess'") is the lowest energy level (n = 1) and has an angular quantum number of ℓ = 0, denoted as s. Orbitals with ℓ = 1, 2 and 3 are denoted as p, d and f respectively. The set of orbitals for a given n and ℓ is called a subshell, denoted

  9. Mesoscopic physics - Wikipedia

    en.wikipedia.org/wiki/Mesoscopic_physics

    Because the electron energy levels of quantum dots are discrete rather than continuous, the addition or subtraction of just a few atoms to the quantum dot has the effect of altering the boundaries of the bandgap. Changing the geometry of the surface of the quantum dot also changes the bandgap energy, owing again to the small size of the dot ...