Search results
Results from the WOW.Com Content Network
Flatworms. Parenchyma is the tissue made up of cells and intercellular spaces that fills the interior of the body of a flatworm, which is an acoelomate. This is a spongy tissue also known as a mesenchymal tissue, in which several types of cells are lodged in their extracellular matrices. The parenchymal cells include myocytes, and many types of ...
Parenchyma is a versatile ground tissue that generally constitutes the "filler" tissue in soft parts of plants. It forms, among other things, the cortex (outer region) and pith (central region) of stems, the cortex of roots, the mesophyll of leaves, the pulp of fruits, and the endosperm of seeds.
t. e. In biology, tissue is an assembly of similar cells and their extracellular matrix from the same embryonic origin that together carry out a specific function; in other words, soft biological material. [1][2] Tissues occupy a biological organizational level between cells and a complete organ.
Aerenchyma or aeriferous parenchyma [1] or lacunae, is a modification of the parenchyma to form a spongy tissue that creates spaces or air channels in the leaves, stems and roots of some plants, which allows exchange of gases between the shoot and the root. [2] The channels of air-filled cavities (see image to right) provide a low-resistance ...
The functional substance, or parenchyma, of the human kidney is divided into two major structures: the outer renal cortex and the inner renal medulla. Grossly, these structures take the shape of eight to 18 cone-shaped renal lobes, each containing renal cortex surrounding a portion of medulla called a renal pyramid. [18]
Cells in the L1 and L2 layers divide in a sideways fashion, which keeps these layers distinct, whereas the L3 layer divides in a more random fashion. In cell biology, the meristem is a type of tissue found in plants. It consists of undifferentiated cells (meristematic cells) capable of cell division. Cells in the meristem can develop into all ...
A vascular bundle is a part of the transport system in vascular plants. The transport itself happens in the stem, which exists in two forms: xylem and phloem. Both these tissues are present in a vascular bundle, which in addition will include supporting and protective tissues. There is also a tissue between xylem and phloem, which is the cambium.
A stem is one of two main structural axes of a vascular plant, the other being the root. It supports leaves, flowers and fruits, transports water and dissolved substances between the roots and the shoots in the xylem and phloem, engages in photosynthesis, stores nutrients, and produces new living tissue. [1]