enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Momentum - Wikipedia

    en.wikipedia.org/wiki/Momentum

    Momentum is a measurable quantity, and the measurement depends on the frame of reference. For example: if an aircraft of mass 1000 kg is flying through the air at a speed of 50 m/s its momentum can be calculated to be 50,000 kg.m/s.

  3. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    In physics, the energy–momentum relation, or relativistic dispersion relation, is the relativistic equation relating total energy (which is also called relativistic energy) to invariant mass (which is also called rest mass) and momentum. It is the extension of mass–energy equivalence for bodies or systems with non-zero momentum.

  4. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    Newton's laws are often stated in terms of point or particle masses, that is, bodies whose volume is negligible. This is a reasonable approximation for real bodies when the motion of internal parts can be neglected, and when the separation between bodies is much larger than the size of each.

  5. Kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Kinetic_energy

    For example, for a speed of 10 km/s (22,000 mph) the correction to the non-relativistic kinetic energy is 0.0417 J/kg (on a non-relativistic kinetic energy of 50 MJ/kg) and for a speed of 100 km/s it is 417 J/kg (on a non-relativistic kinetic energy of 5 GJ/kg). The relativistic relation between kinetic energy and momentum is given by

  6. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  7. Tests of relativistic energy and momentum - Wikipedia

    en.wikipedia.org/wiki/Tests_of_relativistic...

    So relativistic energy and momentum significantly increase with speed, thus the speed of light cannot be reached by massive particles. In some relativity textbooks, the so-called "relativistic mass" = is used as well. However, this concept is considered disadvantageous by many authors, instead the expressions of relativistic energy and momentum ...

  8. Moment (physics) - Wikipedia

    en.wikipedia.org/wiki/Moment_(physics)

    The moment of force, or torque, is a first moment: =, or, more generally, .; Similarly, angular momentum is the 1st moment of momentum: =.Momentum itself is not a moment.; The electric dipole moment is also a 1st moment: = for two opposite point charges or () for a distributed charge with charge density ().

  9. Matter wave - Wikipedia

    en.wikipedia.org/wiki/Matter_wave

    Light waves of all frequencies travel at the same speed of light while matter wave velocity varies strongly with frequency. The relationship between frequency (proportional to energy) and wavenumber or velocity (proportional to momentum) is called a dispersion relation.