Search results
Results from the WOW.Com Content Network
2 → C 6 H 4 Cl 2 + HCl. The reaction also affords the 1,4- and small amounts of the 1,3-isomer. The 1,4- isomer is preferred over the 1,2- isomer due to steric hindrance. The 1,3- isomer is uncommon because it is a meta- compound, while chlorine, like all halogens, is an ortho/para-director in terms of electrophilic aromatic substitution.
Typical dipole moments for simple diatomic molecules are in the range of 0 to 11 D. Molecules with symmetry point groups or containing inversion symmetry will not have a permanent dipole moment, while highly ionic molecular species have a very large dipole moment, e.g. gas-phase potassium bromide, KBr, with a dipole moment of 10.41 D. [3] A proton and an electron 1 Å apart have a dipole ...
1,2-Dichlorobenzene or ortho-dichlorobenzene; 1,3-Dichlorobenzene or meta-dichlorobenzene; 1,4-Dichlorobenzene or para-dichlorobenzene. All three isomers are colorless chlorobenzenes with the formula C 6 H 4 Cl 2. They differ structurally based on where the two chlorine atoms are attached to the ring.
Electric polarization of a given dielectric material sample is defined as the quotient of electric dipole moment (a vector quantity, expressed as coulombs*meters (C*m) in SI units) to volume (meters cubed). [1] [2] Polarization density is denoted mathematically by P; [2] in SI units, it is expressed in coulombs per square meter (C/m 2).
The polarizability of an atom or molecule is defined as the ratio of its induced dipole moment to the local electric field; in a crystalline solid, one considers the dipole moment per unit cell. [1] Note that the local electric field seen by a molecule is generally different from the macroscopic electric field that would be measured externally.
The hyperpolarizability, a nonlinear-optical property of a molecule, is the second order electric susceptibility per unit volume. [1] The hyperpolarizability can be calculated using quantum chemical calculations developed in several software packages. [2] [3] [4] See nonlinear optics.
Molecular symmetry in physics and chemistry describes the symmetry present in molecules and the classification of molecules according to their symmetry. Molecular symmetry is a fundamental concept in the application of Quantum Mechanics in physics and chemistry, for example it can be used to predict or explain many of a molecule's properties, such as its dipole moment and its allowed ...
The electric dipole moment is a measure of the separation of positive and negative electrical charges within a system: that is, a measure of the system's overall polarity. ...