enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Orbital plane - Wikipedia

    en.wikipedia.org/wiki/Orbital_plane

    The orbital plane is defined in relation to a reference plane by two parameters: inclination (i) and longitude of the ascending node (Ω). By definition, the reference plane for the Solar System is usually considered to be Earth's orbital plane, which defines the ecliptic, the circular path on the celestial sphere that the Sun appears to follow ...

  3. Orbital plane of reference - Wikipedia

    en.wikipedia.org/wiki/Orbital_plane_of_reference

    The ecliptic or invariable plane for planets, asteroids, comets, etc. within the Solar System, as these bodies generally have orbits that lie close to the ecliptic. The equatorial plane of the orbited body for satellites orbiting with small semi-major axes; The local Laplace plane for satellites orbiting with intermediate-to-large semi-major axes

  4. Orbital mechanics - Wikipedia

    en.wikipedia.org/wiki/Orbital_mechanics

    Orbital mechanics is a core discipline within space-mission design and control. Celestial mechanics treats more broadly the orbital dynamics of systems under the influence of gravity, including both spacecraft and natural astronomical bodies such as star systems, planets, moons, and comets.

  5. Solar System - Wikipedia

    en.wikipedia.org/wiki/Solar_System

    The Solar System [d] is the gravitationally bound system of the Sun and the objects that orbit it. [11] It formed about 4.6 billion years ago when a dense region of a molecular cloud collapsed, forming the Sun and a protoplanetary disc.

  6. Orbital elements - Wikipedia

    en.wikipedia.org/wiki/Orbital_elements

    K̂ is perpendicular to the reference plane. Orbital elements of bodies (planets, comets, asteroids, ...) in the Solar System usually the ecliptic as that plane. x̂, ŷ are in the orbital plane and with x̂ in the direction to the pericenter . ẑ is perpendicular to the plane of the orbit. ŷ is mutually perpendicular to x̂ and ẑ.

  7. Orbit - Wikipedia

    en.wikipedia.org/wiki/Orbit

    An animation showing a low eccentricity orbit (near-circle, in red), and a high eccentricity orbit (ellipse, in purple). In celestial mechanics, an orbit (also known as orbital revolution) is the curved trajectory of an object [1] such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such ...

  8. Retrograde and prograde motion - Wikipedia

    en.wikipedia.org/wiki/Retrograde_and_prograde_motion

    If formed in the gravity field of a planet as the planet is forming, a moon will orbit the planet in the same direction as the planet is rotating and is a regular moon. If an object is formed elsewhere and later captured into orbit by a planet's gravity, it can be captured into either a retrograde or prograde orbit depending on whether it first ...

  9. Axial tilt - Wikipedia

    en.wikipedia.org/wiki/Axial_tilt

    Since obliquity is the angle between the axis of rotation and the direction perpendicular to the orbital plane, it changes as the orbital plane changes due to the influence of other planets. But the axis of rotation can also move (axial precession), due to torque exerted by the Sun on a planet's equatorial bulge. Like Earth, all of the rocky ...