Search results
Results from the WOW.Com Content Network
In most diodes, a white or black painted band identifies the cathode into which electrons will flow when the diode is conducting. Electron flow is the reverse of conventional current flow. [2] [3] [4] A diode is a two-terminal electronic component that conducts current primarily in one direction (asymmetric conductance).
The current in an LED or other diodes rises exponentially with the applied voltage (see Shockley diode equation), so a small change in voltage can cause a large change in current. Current through the LED must be regulated by an external circuit such as a constant current source to prevent damage. Since most common power supplies are (nearly ...
Reverse bias is in the direction of little or no current flow; Negative charge carriers (electrons) can easily flow through the junction from n to p but not from p to n, and the reverse is true for positive charge carriers (Electron hole). When the p–n junction is forward-biased, charge carriers flow freely due to the reduction in energy ...
The p–n junction in any direct band gap material emits light when electric current flows through it. This is electroluminescence. Electrons cross from the n-region and recombine with the holes existing in the p-region. Free electrons are in the conduction band of energy levels, while holes are in the valence energy band. Thus the energy level ...
Various semiconductor diodes. Left: A four-diode bridge rectifier. Next to it is a 1N4148 signal diode. On the far right is a Zener diode. In most diodes, a white or black painted band identifies the cathode into which electrons will flow when the diode is conducting. Electron flow is the reverse of conventional current flow. [1] [2] [3]
A Zener diode is a special type of diode designed to reliably allow current to flow "backwards" (inverted polarity) when a certain set reverse voltage, known as the Zener voltage, is reached. Zener diodes are manufactured with a great variety of Zener voltages and some are even variable.
Illustration of the "reference directions" of the current (), voltage (), and power () variables used in the passive sign convention.If positive current is defined as flowing into the device terminal which is defined to be positive voltage, then positive power (big arrow) given by the equation = represents electric power flowing into the device, and negative power represents power flowing out.
A conventional current describes the direction in which positive charges move. Electrons have a negative electrical charge, so the movement of electrons is opposite to that of the conventional current flow. Consequently, the mnemonic cathode current departs also means that electrons flow into the device's cathode from the external circuit. For ...