enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of moments of inertia - Wikipedia

    en.wikipedia.org/wiki/List_of_moments_of_inertia

    Moment of inertia, denoted by I, measures the extent to which an object resists rotational acceleration about a particular axis; it is the rotational analogue to mass (which determines an object's resistance to linear acceleration). The moments of inertia of a mass have units of dimension ML 2 ([mass] × [length] 2).

  3. Tennis racket theorem - Wikipedia

    en.wikipedia.org/wiki/Tennis_racket_theorem

    The tennis racket theorem or intermediate axis theorem, is a kinetic phenomenon of classical mechanics which describes the movement of a rigid body with three distinct principal moments of inertia. It has also been dubbed the Dzhanibekov effect , after Soviet cosmonaut Vladimir Dzhanibekov , who noticed one of the theorem's logical consequences ...

  4. Stretch rule - Wikipedia

    en.wikipedia.org/wiki/Stretch_rule

    In classical mechanics, the stretch rule (sometimes referred to as Routh's rule) states that the moment of inertia of a rigid object is unchanged when the object is stretched parallel to an axis of rotation that is a principal axis, provided that the distribution of mass remains unchanged except in the direction parallel to the axis. [1]

  5. Moment of inertia - Wikipedia

    en.wikipedia.org/wiki/Moment_of_inertia

    A body's moment of inertia about a particular axis depends both on the mass and its distribution relative to the axis, increasing with mass & distance from the axis. It is an extensive (additive) property: for a point mass the moment of inertia is simply the mass times the square of the perpendicular distance to the axis of rotation.

  6. Euler's equations (rigid body dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler's_equations_(rigid...

    Also in some frames not tied to the body can it be possible to obtain such simple (diagonal tensor) equations for the rate of change of the angular momentum. Then ω must be the angular velocity for rotation of that frames axes instead of the rotation of the body. It is however still required that the chosen axes are still principal axes of ...

  7. Poinsot's ellipsoid - Wikipedia

    en.wikipedia.org/wiki/Poinsot's_ellipsoid

    As described in the tennis racket theorem, rotation of an object around its first or third principal axis is stable, while rotation around its second principal axis (or intermediate axis) is not. The motion is simplified in the case of an axisymmetric body, in which the moment of inertia is the same about two of the principal axes.

  8. List of second moments of area - Wikipedia

    en.wikipedia.org/wiki/List_of_second_moments_of_area

    The parallel axis theorem can be used to determine the second moment of area of a rigid body about any axis, given the body's second moment of area about a parallel axis through the body's centroid, the area of the cross section, and the perpendicular distance (d) between the axes. ′ = +

  9. Principal axis theorem - Wikipedia

    en.wikipedia.org/wiki/Principal_axis_theorem

    In geometry and linear algebra, a principal axis is a certain line in a Euclidean space associated with a ellipsoid or hyperboloid, generalizing the major and minor axes of an ellipse or hyperbola. The principal axis theorem states that the principal axes are perpendicular , and gives a constructive procedure for finding them.