Search results
Results from the WOW.Com Content Network
In mathematics and its applications, the mean square is normally defined as the arithmetic mean of the squares of a set of numbers or of a random variable. [ 1 ] It may also be defined as the arithmetic mean of the squares of the deviations between a set of numbers and a reference value (e.g., may be a mean or an assumed mean of the data), [ 2 ...
The MSE either assesses the quality of a predictor (i.e., a function mapping arbitrary inputs to a sample of values of some random variable), or of an estimator (i.e., a mathematical function mapping a sample of data to an estimate of a parameter of the population from which the data is sampled).
When the model has been estimated over all available data with none held back, the MSPE of the model over the entire population of mostly unobserved data can be estimated as follows.
Furthermore, the mean square difference between a model and the data can be calculated by adding in quadrature the bias and the standard deviation of the errors. The code for these "modified" Taylor diagrams was developed, and is available in, Python [ 13 ] .
Physical scientists often use the term root mean square as a synonym for standard deviation when it can be assumed the input signal has zero mean, that is, referring to the square root of the mean squared deviation of a signal from a given baseline or fit. [8] [9] This is useful for electrical engineers in calculating the "AC only" RMS of a signal.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Upgrade to a faster, more secure version of a supported browser. It's free and it only takes a few moments:
In statistics, expected mean squares (EMS) are the expected values of certain statistics arising in partitions of sums of squares in the analysis of variance (ANOVA). They can be used for ascertaining which statistic should appear in the denominator in an F-test for testing a null hypothesis that a particular effect is absent.