enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bogacki–Shampine method - Wikipedia

    en.wikipedia.org/wiki/Bogacki–Shampine_method

    The Bogacki–Shampine method is implemented in the ode3 for fixed step solver and ode23 for a variable step solver function in MATLAB (Shampine & Reichelt 1997). Low-order methods are more suitable than higher-order methods like the Dormand–Prince method of order five, if only a crude approximation to the solution is required.

  3. Numerical methods for ordinary differential equations

    en.wikipedia.org/wiki/Numerical_methods_for...

    For example, the second-order equation y′′ = −y can be rewritten as two first-order equations: y′ = z and z′ = −y. In this section, we describe numerical methods for IVPs, and remark that boundary value problems (BVPs) require a different set of tools. In a BVP, one defines values, or components of the solution y at more than one ...

  4. Muller's method - Wikipedia

    en.wikipedia.org/wiki/Muller's_method

    Muller's method is a root-finding algorithm, a numerical method for solving equations of the form f(x) = 0.It was first presented by David E. Muller in 1956.. Muller's method proceeds according to a third-order recurrence relation similar to the second-order recurrence relation of the secant method.

  5. Multilevel fast multipole method - Wikipedia

    en.wikipedia.org/wiki/Multilevel_fast_multipole...

    The MLFMM is based on the Method of Moments (MoM), but reduces the memory complexity from () to (⁡), and the solving complexity from () to (⁡), where represents the number of unknowns and the number of iterations in the solver. This method subdivides the Boundary Element mesh into different clusters and if two clusters are in each other's ...

  6. Linear multistep method - Wikipedia

    en.wikipedia.org/wiki/Linear_multistep_method

    Linear multistep methods are used for the numerical solution of ordinary differential equations. Conceptually, a numerical method starts from an initial point and then takes a short step forward in time to find the next solution point. The process continues with subsequent steps to map out the solution.

  7. McCabe–Thiele method - Wikipedia

    en.wikipedia.org/wiki/McCabe–Thiele_method

    The rectifying section operating line for the section above the inlet feed stream of the distillation column (shown in green in Figure 1) starts at the intersection of the distillate composition line and the x = y line and continues at a downward slope of L / (D + L), where L is the molar flow rate of reflux and D is the molar flow rate of the ...

  8. MUSCL scheme - Wikipedia

    en.wikipedia.org/wiki/MUSCL_scheme

    The diagram opposite shows a 3rd order solution to G A Sod's shock tube problem (Sod, 1978) using the above high resolution Kurganov and Tadmor Central Scheme (KT) but with parabolic reconstruction and van Albada limiter. This again illustrates the effectiveness of the MUSCL approach to solving the Euler equations.

  9. Finite difference method - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_method

    For example, consider the ordinary differential equation ′ = + The Euler method for solving this equation uses the finite difference quotient (+) ′ to approximate the differential equation by first substituting it for u'(x) then applying a little algebra (multiplying both sides by h, and then adding u(x) to both sides) to get (+) + (() +).