Search results
Results from the WOW.Com Content Network
The formula expresses the fact that the sum of the sizes of the two sets may be too large since some elements may be counted twice. The double-counted elements are those in the intersection of the two sets and the count is corrected by subtracting the size of the intersection.
In mathematics, a combination is a selection of items from a set that has distinct members, such that the order of selection does not matter (unlike permutations).For example, given three fruits, say an apple, an orange and a pear, there are three combinations of two that can be drawn from this set: an apple and a pear; an apple and an orange; or a pear and an orange.
Burnside's lemma can compute the number of rotationally distinct colourings of the faces of a cube using three colours.. Let X be the set of 3 6 possible face color combinations that can be applied to a fixed cube, and let the rotation group G of the cube act on X by moving the colored faces: two colorings in X belong to the same orbit precisely when one is a rotation of the other.
Exact-count functions: their value is 1 on input vectors with k ones for a fixed k. One-hot or 1-in-n function: their value is 1 on input vectors with exactly one one; One-cold function: their value is 1 on input vectors with exactly one zero; Congruence functions: their value is 1 on input vectors with the number of ones congruent to k mod m ...
As a word of caution, "a one-to-one function" is one that is injective, while a "one-to-one correspondence" refers to a bijective function. Also, the statement "f maps X onto Y" differs from "f maps X into B", in that the former implies that f is surjective, while the latter makes no assertion about the nature of f. In a complicated reasoning ...
The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.
In mathematics, a multivalued function, [1] multiple-valued function, [2] many-valued function, [3] or multifunction, [4] is a function that has two or more values in its range for at least one point in its domain. [5]
What appears to the modern reader as the representing function's logical inversion, i.e. the representing function is 0 when the function R is "true" or satisfied", plays a useful role in Kleene's definition of the logical functions OR, AND, and IMPLY, [2]: 228 the bounded-[2]: 228 and unbounded-[2]: 279 ff mu operators and the CASE function ...