Search results
Results from the WOW.Com Content Network
Cyclic numbers are related to the recurring digital representations of unit fractions. A cyclic number of length L is the digital representation of 1/(L + 1). Conversely, if the digital period of 1/p (where p is prime) is p − 1, then the digits represent a cyclic number. For example: 1/7 = 0.142857 142857...
A number n is called a cyclic number if Z/nZ is the only group of order n, which is true exactly when gcd(n, φ(n)) = 1. [13] The sequence of cyclic numbers include all primes, but some are composite such as 15. However, all cyclic numbers are odd except 2. The cyclic numbers are:
A cyclic number [1] [2] is a natural number n such that n and φ(n) are coprime. Here φ is Euler's totient function. An equivalent definition is that a number n is cyclic if and only if any group of order n is cyclic. [3] Any prime number is clearly cyclic. All cyclic numbers are square-free. [4] Let n = p 1 p 2 …
Cyclic number, a number such that cyclic permutations of the digits are successive multiples of the number; Cyclic order, a ternary relation defining a way to arrange a set of objects in a circle; Cyclic permutation, a permutation with one nontrivial orbit; Cyclic polygon, a polygon which can be given a circumscribed circle; Cyclic shift, also ...
In mathematics, the order of a finite group is the number of its elements. If a group is not finite, one says that its order is infinite. The order of an element of a group (also called period length or period) is the order of the subgroup generated by the element.
By definition, the group is cyclic if and only if it has a generator g (a generating set {g} of size one), that is, the powers ,,, …, give all possible residues modulo n coprime to n (the first () powers , …, give each exactly once).
A cyclic permutation consisting of a single 8-cycle. There is not widespread consensus about the precise definition of a cyclic permutation. Some authors define a permutation σ of a set X to be cyclic if "successive application would take each object of the permuted set successively through the positions of all the other objects", [1] or, equivalently, if its representation in cycle notation ...
Since the sign of the discriminant of a number field K is (−1) r 2, where r 2 is the number of conjugate pairs of complex embeddings of K into C, the discriminant of a cubic field will be positive precisely when the field is totally real, and negative if it is a complex cubic field.