Search results
Results from the WOW.Com Content Network
The above image shows a table with some of the most common test statistics and their corresponding tests or models. A statistical hypothesis test is a method of statistical inference used to decide whether the data sufficiently supports a particular hypothesis. A statistical hypothesis test typically involves a calculation of a test statistic.
In statistical hypothesis testing, a uniformly most powerful (UMP) test is a hypothesis test which has the greatest power among all possible tests of a given size α.For example, according to the Neyman–Pearson lemma, the likelihood-ratio test is UMP for testing simple (point) hypotheses.
Statistical tests are used to test the fit between a hypothesis and the data. [1] [2] Choosing the right statistical test is not a trivial task. [1]The choice of the test depends on many properties of the research question.
Exact statistics, such as that described in exact test, is a branch of statistics that was developed to provide more accurate results pertaining to statistical testing and interval estimation by eliminating procedures based on asymptotic and approximate statistical methods.
Illustration of the power of a statistical test, for a two sided test, through the probability distribution of the test statistic under the null and alternative hypothesis. α is shown as the blue area, the probability of rejection under null, while the red area shows power, 1 − β, the probability of correctly rejecting under the alternative.
However, in practice, most implementations of non-parametric test software use asymptotical algorithms to obtain the significance value, which renders the test non-exact. Hence, when a result of statistical analysis is termed an “exact test” or specifies an “exact p-value ”, this implies that the test is defined without parametric ...
Furthermore, Boschloo's test is an exact test that is uniformly more powerful than Fisher's exact test by construction. [25] Most modern statistical packages will calculate the significance of Fisher tests, in some cases even where the chi-squared approximation would also be acceptable. The actual computations as performed by statistical ...
Pearson's chi-squared test or Pearson's test is a statistical test applied to sets of categorical data to evaluate how likely it is that any observed difference between the sets arose by chance. It is the most widely used of many chi-squared tests (e.g., Yates , likelihood ratio , portmanteau test in time series , etc.) – statistical ...