Search results
Results from the WOW.Com Content Network
The Burrows–Wheeler transform (BWT, also called block-sorting compression) rearranges a character string into runs of similar characters. This is useful for compression, since it tends to be easy to compress a string that has runs of repeated characters by techniques such as move-to-front transform and run-length encoding.
There may also be systems for certain general recursive functions, for example a system for the Ackermann function may contain the rule A(a +, b +) → A(a, A(a +, b)), [1] where b + denotes the successor of b. Given two terms s and t, with a root symbol f and g, respectively, to decide their relation their root symbols are compared first.
In mathematics, the lexicographic or lexicographical order (also known as lexical order, or dictionary order) is a generalization of the alphabetical order of the dictionaries to sequences of ordered symbols or, more generally, of elements of a totally ordered set. There are several variants and generalizations of the lexicographical ordering.
In mathematics, and particularly in the theory of formal languages, shortlex is a total ordering for finite sequences of objects that can themselves be totally ordered. In the shortlex ordering, sequences are primarily sorted by cardinality (length) with the shortest sequences first, and sequences of the same length are sorted into lexicographical order. [1]
In mathematics, lexicographical order is a means of ordering sequences in a manner analogous to that used to produce alphabetical order. [16] Some computer applications use a version of alphabetical order that can be achieved using a very simple algorithm, based purely on the ASCII or Unicode codes for characters. This may have non-standard ...
In computing, natural sort order (or natural sorting) is the ordering of strings in alphabetical order, except that multi-digit numbers are treated atomically, i.e., as if they were a single character. Natural sort order has been promoted as being more human-friendly ("natural") than machine-oriented, pure alphabetical sort order.
Suffix arrays are closely related to suffix trees: . Suffix arrays can be constructed by performing a depth-first traversal of a suffix tree. The suffix array corresponds to the leaf-labels given in the order in which these are visited during the traversal, if edges are visited in the lexicographical order of their first character.
It stores the lengths of the longest common prefixes (LCPs) between all pairs of consecutive suffixes in a sorted suffix array. For example, if A := [ aab , ab , abaab , b , baab ] is a suffix array, the longest common prefix between A [1] = aab and A [2] = ab is a which has length 1, so H [2] = 1 in the LCP array H .