Search results
Results from the WOW.Com Content Network
In mathematics, the comparison test, sometimes called the direct comparison test to distinguish it from similar related tests (especially the limit comparison test), provides a way of deducing whether an infinite series or an improper integral converges or diverges by comparing the series or integral to one whose convergence properties are known.
This is a problem closely related to the longest common subsequence problem. Given two sequences X = < x 1,...,x m > and Y = < y 1,...,y n >, a sequence U = < u 1,...,u k > is a common supersequence of X and Y if items can be removed from U to produce X and Y. A shortest common supersequence (SCS) is a common supersequence of minimal length.
For any real sequence , the above results on convergence imply that the infinite series ∑ k = 1 ∞ a k {\displaystyle \sum _{k=1}^{\infty }a_{k}} converges if and only if for every ε > 0 {\displaystyle \varepsilon >0} there is a number N , such that m ≥ n ≥ N imply
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
To prove the theorem, define a partial ordering on the members of the sequence, in which x is less than or equal to y in the partial order if x ≤ y as numbers and x is not later than y in the sequence. A chain in this partial order is a monotonically increasing subsequence, and an antichain is a monotonically decreasing subsequence.
The infinite sequence of additions expressed by a series cannot be explicitly performed in sequence in a finite amount of time. However, if the terms and their finite sums belong to a set that has limits, it may be possible to assign a value to a series, called the sum of the series.
In mathematics, the Cauchy condensation test, named after Augustin-Louis Cauchy, is a standard convergence test for infinite series. For a non-increasing sequence of non-negative real numbers, the series = converges if and only if the "condensed" series = converges. Moreover, if they converge, the sum of the condensed series is no more than ...
Convergence proof techniques are canonical patterns of mathematical proofs that sequences or functions converge to a finite limit when the argument tends to infinity.. There are many types of sequences and modes of convergence, and different proof techniques may be more appropriate than others for proving each type of convergence of each type of sequence.