Search results
Results from the WOW.Com Content Network
contains(string,substring) returns boolean Description Returns whether string contains substring as a substring. This is equivalent to using Find and then detecting that it does not result in the failure condition listed in the third column of the Find section. However, some languages have a simpler way of expressing this test.
The string spelled by the edges from the root to such a node is a longest repeated substring. The problem of finding the longest substring with at least k {\displaystyle k} occurrences can be solved by first preprocessing the tree to count the number of leaf descendants for each internal node, and then finding the deepest node with at least k ...
In the array containing the E(x, y) values, we then choose the minimal value in the last row, let it be E(x 2, y 2), and follow the path of computation backwards, back to the row number 0. If the field we arrived at was E(0, y 1), then T[y 1 + 1] ... T[y 2] is a substring of T with the minimal edit distance to the pattern P.
The picture shows two strings where the problem has multiple solutions. Although the substring occurrences always overlap, it is impossible to obtain a longer common substring by "uniting" them. The strings "ABABC", "BABCA" and "ABCBA" have only one longest common substring, viz. "ABC" of length 3.
These algorithms are all linear-time for a constant-size alphabet, and have worst-case running time of () in general. Farach (1997) gave the first suffix tree construction algorithm that is optimal for all alphabets. In particular, this is the first linear-time algorithm for strings drawn from an alphabet of integers in a polynomial range.
A description of Manacher’s algorithm for finding the longest palindromic substring in linear time. Akalin, Fred (2007-11-28), Finding the longest palindromic substring in linear time. An explanation and Python implementation of Manacher's linear-time algorithm. Jeuring, Johan (2007–2010), Palindromes. Haskell implementation of Jeuring's ...
A simple and inefficient way to see where one string occurs inside another is to check at each index, one by one. First, we see if there is a copy of the needle starting at the first character of the haystack; if not, we look to see if there's a copy of the needle starting at the second character of the haystack, and so forth.
A naive string matching algorithm compares the given pattern against all positions in the given text. Each comparison takes time proportional to the length of the pattern, and the number of positions is proportional to the length of the text. Therefore, the worst-case time for such a method is proportional to the product of the two lengths.