enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Analysis of variance - Wikipedia

    en.wikipedia.org/wiki/Analysis_of_variance

    The textbook method is to compare the observed value of F with the critical value of F determined from tables. The critical value of F is a function of the degrees of freedom of the numerator and the denominator and the significance level (α). If F ≥ F Critical, the null hypothesis is rejected.

  3. One-way analysis of variance - Wikipedia

    en.wikipedia.org/wiki/One-way_analysis_of_variance

    This analysis of variance technique requires a numeric response variable "Y" and a single explanatory variable "X", hence "one-way". [1] The ANOVA tests the null hypothesis, which states that samples in all groups are drawn from populations with the same mean values. To do this, two estimates are made of the population variance.

  4. p-value - Wikipedia

    en.wikipedia.org/wiki/P-value

    In null-hypothesis significance testing, the p-value [note 1] is the probability of obtaining test results at least as extreme as the result actually observed, under the assumption that the null hypothesis is correct. [2] [3] A very small p-value means that such an extreme observed outcome would be very unlikely under the null hypothesis.

  5. Expected mean squares - Wikipedia

    en.wikipedia.org/wiki/Expected_mean_squares

    In statistics, expected mean squares (EMS) are the expected values of certain statistics arising in partitions of sums of squares in the analysis of variance (ANOVA). They can be used for ascertaining which statistic should appear in the denominator in an F-test for testing a null hypothesis that a particular effect is absent.

  6. Mixed-design analysis of variance - Wikipedia

    en.wikipedia.org/wiki/Mixed-design_analysis_of...

    Huck, S. W. & McLean, R. A. (1975). "Using a repeated measures ANOVA to analyze the data from a pretest-posttest design: A potentially confusing task". Psychological Bulletin, 82, 511–518. Pollatsek, A. & Well, A. D. (1995). "On the use of counterbalanced designs in cognitive research: A suggestion for a better and more powerful analysis".

  7. Omnibus test - Wikipedia

    en.wikipedia.org/wiki/Omnibus_test

    Linear Regression procedure has been run on the data, as follows: The omnibus F test in the ANOVA table implies that the model involved these three predictors can fit for predicting "Average cost of claims", since the null hypothesis is rejected (P-Value=0.000 < 0.01, α=0.01).

  8. Two-way analysis of variance - Wikipedia

    en.wikipedia.org/wiki/Two-way_analysis_of_variance

    In statistics, the two-way analysis of variance (ANOVA) is an extension of the one-way ANOVA that examines the influence of two different categorical independent variables on one continuous dependent variable. The two-way ANOVA not only aims at assessing the main effect of each independent variable but also if there is any interaction between them.

  9. Scheffé's method - Wikipedia

    en.wikipedia.org/wiki/Scheffé's_method

    Frequently, subscript letters are used to indicate which values are significantly different using the Scheffé method. For example, when mean values of variables that have been analyzed using an ANOVA are presented in a table, they are assigned a different letter subscript based on a Scheffé contrast.