Search results
Results from the WOW.Com Content Network
A statistically significant effect in ANOVA is often followed by additional tests. This can be done in order to assess which groups are different from which other groups or to test various other focused hypotheses. Follow-up tests are often distinguished in terms of whether they are "planned" or "post hoc." Planned tests are determined before ...
In statistics, one-way analysis of variance (or one-way ANOVA) is a technique to compare whether two or more samples' means are significantly different (using the F distribution). This analysis of variance technique requires a numeric response variable "Y" and a single explanatory variable "X", hence "one-way".
In statistics, the two-way analysis of variance (ANOVA) is an extension of the one-way ANOVA that examines the influence of two different categorical independent variables on one continuous dependent variable. The two-way ANOVA not only aims at assessing the main effect of each independent variable but also if there is any interaction between them.
The parametric equivalent of the Kruskal–Wallis test is the one-way analysis of variance (ANOVA). A significant Kruskal–Wallis test indicates that at least one sample stochastically dominates one other sample. The test does not identify where this stochastic dominance occurs or for how many pairs of groups stochastic dominance obtains.
There is significant differences among sample averages; The observed differences among sample averages could not be reasonably caused by random chance itself; The result is statistically significant; Note that when there are only two groups for the one-way ANOVA F-test, = where t is the Student's statistic.
[1] [2] They are usually used to uncover specific differences between three or more group means when an analysis of variance (ANOVA) test is significant. [3] This typically creates a multiple testing problem because each potential analysis is effectively a statistical test. Multiple testing procedures are sometimes used to compensate, but that ...
Tukey's range test, also known as Tukey's test, Tukey method, Tukey's honest significance test, or Tukey's HSD (honestly significant difference) test, [1] is a single-step multiple comparison procedure and statistical test.
Sphericity is an important assumption of a repeated-measures ANOVA. It is the condition of equal variances among the differences between all possible pairs of within-subject conditions (i.e., levels of the independent variable).