enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fourth power - Wikipedia

    en.wikipedia.org/wiki/Fourth_power

    In arithmetic and algebra, the fourth power of a number n is the result of multiplying four instances of n together. So: n4 = n × n × n × n. Fourth powers are also formed by multiplying a number by its cube. Furthermore, they are squares of squares. Some people refer to n4 as n “ tesseracted ”, “ hypercubed ”, “ zenzizenzic ...

  3. Cube (algebra) - Wikipedia

    en.wikipedia.org/wiki/Cube_(algebra)

    Cube (algebra) y = x3 for values of 1 ≤ x ≤ 25. In arithmetic and algebra, the cube of a number n is its third power, that is, the result of multiplying three instances of n together. The cube of a number or any other mathematical expression is denoted by a superscript 3, for example 23 = 8 or (x + 1)3. The cube is also the number ...

  4. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    Each curve passes through the point (0, 1) because any nonzero number raised to the power of 0 is 1. At x = 1, the value of y equals the base because any number raised to the power of 1 is the number itself. In mathematics, exponentiation is an operation involving two numbers: the base and the exponent or power.

  5. Binomial theorem - Wikipedia

    en.wikipedia.org/wiki/Binomial_theorem

    In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, it is possible to expand the polynomial (x + y) n into a sum involving terms of the form ax b y c, where the exponents b and c are nonnegative integers with b + c = n, and the coefficient a of each term is a specific positive integer depending ...

  6. Sums of three cubes - Wikipedia

    en.wikipedia.org/wiki/Sums_of_three_cubes

    In the mathematics of sums of powers, it is an open problem to characterize the numbers that can be expressed as a sum of three cubes of integers, allowing both positive and negative cubes in the sum. A necessary condition for an integer to equal such a sum is that cannot equal 4 or 5 modulo 9, because the cubes modulo 9 are 0, 1, and −1, and ...

  7. Sums of powers - Wikipedia

    en.wikipedia.org/wiki/Sums_of_powers

    The sum of the reciprocals of all perfect powers including duplicates (but not including 1) equals 1. The ErdÅ‘s–Moser equation, + + + = (+) where m and k are positive integers, is conjectured to have no solutions other than 1 1 + 2 1 = 3 1. The sums of three cubes cannot equal 4 or 5 modulo 9, but it is unknown whether all remaining integers ...

  8. Scientific notation - Wikipedia

    en.wikipedia.org/wiki/Scientific_notation

    On scientific calculators, it is usually known as "SCI" display mode. In scientific notation, nonzero numbers are written in the form. or m times ten raised to the power of n, where n is an integer, and the coefficient m is a nonzero real number (usually between 1 and 10 in absolute value, and nearly always written as a terminating decimal).

  9. Tetration - Wikipedia

    en.wikipedia.org/wiki/Tetration

    Analogously, the inverses of tetration are often called the super-root, and the super-logarithm (In fact, all hyperoperations greater than or equal to 3 have analogous inverses); e.g., in the function =, the two inverses are the cube super-root of y and the super-logarithm base y of x.