Search results
Results from the WOW.Com Content Network
The essay includes an example of a man trying to guess the ratio of "blanks" and "prizes" at a lottery. So far the man has watched the lottery draw ten blanks and one prize. Given these data, Bayes showed in detail how to compute the probability that the ratio of blanks to prizes is between 9:1 and 11:1 (the probability is low - about 7.7%).
Problem statement. A problem statement is a description of an issue to be addressed, or a condition to be improved upon. It identifies the gap between the current problem and goal. The first condition of solving a problem is understanding the problem, which can be done by way of a problem statement. [1]
Problem solving is the process of achieving a goal by overcoming obstacles, a frequent part of most activities. Problems in need of solutions range from simple personal tasks (e.g. how to turn on an appliance) to complex issues in business and technical fields. The former is an example of simple problem solving (SPS) addressing one issue ...
Creative problem-solving (CPS) [1] is the mental process of searching for an original and previously unknown solution to a problem. To qualify, the solution must be novel and reached independently. [1][2] The creative problem-solving process was originally developed by Alex Osborn and Sid Parnes. Creative problem solving (CPS) is a way of using ...
Fermi problem. A Fermi problem (or Fermi quiz, Fermi question, Fermi estimate), also known as an order-of-magnitude problem (or order-of-magnitude estimate, order estimation), is an estimation problem in physics or engineering education, designed to teach dimensional analysis or approximation of extreme scientific calculations.
Buffon's needle was the earliest problem in geometric probability to be solved; [2] it can be solved using integral geometry. The solution for the sought probability p, in the case where the needle length l is not greater than the width t of the strips, is. {\displaystyle p= {\frac {2} {\pi }}\cdot {\frac {l} {t}}.}
Map of Königsberg in Euler's time showing the actual layout of the seven bridges, highlighting the river Pregel and the bridges. The Seven Bridges of Königsberg is a historically notable problem in mathematics. Its negative resolution by Leonhard Euler, in 1736, [1] laid the foundations of graph theory and prefigured the idea of topology.
To find all solutions, one simply makes a note and continues, rather than ending the process, when a solution is found, until all solutions have been tried. To find the best solution, one finds all solutions by the method just described and then comparatively evaluates them based upon some predefined set of criteria, the existence of which is a ...