enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Spin-1/2 - Wikipedia

    en.wikipedia.org/wiki/Spin-1/2

    When the probabilities are calculated, the −1 is squared, (−1) 2 = 1, so the predicted physics is the same as in the starting position. Also, in a spin-⁠ 1 / 2particle there are only two spin states and the amplitudes for both change by the same −1 factor, so the interference effects are identical, unlike the case for higher spins ...

  3. Spin quantum number - Wikipedia

    en.wikipedia.org/wiki/Spin_quantum_number

    A spin-⁠ 1 / 2particle is characterized by an angular momentum quantum number for spin s = ⁠ 1 / 2 ⁠. In solutions of the Schrödinger-Pauli equation, angular momentum is quantized according to this number, so that magnitude of the spin angular momentum is

  4. Spin (physics) - Wikipedia

    en.wikipedia.org/wiki/Spin_(physics)

    Spin is an intrinsic form of angular momentum carried by elementary particles, and thus by composite particles such as hadrons, atomic nuclei, and atoms. [1] [2]: 183–184 Spin is quantized, and accurate models for the interaction with spin require relativistic quantum mechanics or quantum field theory.

  5. Eigenspinor - Wikipedia

    en.wikipedia.org/wiki/Eigenspinor

    The simplest and most illuminating example of eigenspinors is for a single spin 1/2 particle. A particle's spin has three components, corresponding to the three spatial dimensions: , , and . For a spin 1/2 particle, there are only two possible eigenstates of spin: spin up, and spin down.

  6. Two-state quantum system - Wikipedia

    en.wikipedia.org/wiki/Two-state_quantum_system

    A well known example of a two-state system is the spin of a spin-1/2 particle such as an electron, whose spin can have values +ħ/2 or −ħ/2, where ħ is the reduced Planck constant. The two-state system cannot be used as a description of absorption or decay, because such processes require coupling to a continuum.

  7. Lévy-Leblond equation - Wikipedia

    en.wikipedia.org/wiki/Lévy-Leblond_equation

    For a nonrelativistic spin-1/2 particle of mass m, a representation of the time-independent Lévy-Leblond equation reads: [1] {+ = + =where c is the speed of light, E is the nonrelativistic particle energy, = is the momentum operator, and = (,,) is the vector of Pauli matrices, which is proportional to the spin operator =.

  8. Fermion - Wikipedia

    en.wikipedia.org/wiki/Fermion

    All subatomic particles must be one or the other. A composite particle may fall into either class depending on its composition. In particle physics, a fermion is a subatomic particle that follows Fermi–Dirac statistics. Fermions have a half-odd-integer spin (spin ⁠ 1 / 2 ⁠, spin ⁠ 3 / 2 ⁠, etc.) and obey the Pauli exclusion principle.

  9. List of particles - Wikipedia

    en.wikipedia.org/wiki/List_of_particles

    The graviton must be a spin-2 boson because the source of gravitation is the stress–energy tensor, a second-order tensor (compared with electromagnetism's spin-1 photon, the source of which is the four-current, a first-order tensor). Additionally, it can be shown that any massless spin-2 field would give rise to a force indistinguishable from ...