Ad
related to: how to differentiate exponentialeducation.com has been visited by 100K+ users in the past month
This site is a teacher's paradise! - The Bender Bunch
- Printable Workbooks
Download & print 300+ workbooks
written & reviewed by teachers.
- Lesson Plans
Engage your students with our
detailed lesson plans for K-8.
- Guided Lessons
Learn new concepts step-by-step
with colorful guided lessons.
- Interactive Stories
Enchant young learners with
animated, educational stories.
- Printable Workbooks
Search results
Results from the WOW.Com Content Network
Exponential functions with bases 2 and 1/2. In mathematics, the exponential function is the unique real function which maps zero to one and has a derivative equal to its value. . The exponential of a variable is denoted or , with the two notations used interchangeab
Logarithmic differentiation is a technique which uses logarithms and its differentiation rules to simplify certain expressions before actually applying the derivative. [ citation needed ] Logarithms can be used to remove exponents, convert products into sums, and convert division into subtraction — each of which may lead to a simplified ...
The exponential function () = is the unique differentiable function of a complex variable for which the derivative equals the function = and () = Power series definition [ edit ]
In case G is a matrix Lie group, the exponential map reduces to the matrix exponential. The exponential map, denoted exp:g → G, is analytic and has as such a derivative d / dt exp(X(t)):Tg → TG, where X(t) is a C 1 path in the Lie algebra, and a closely related differential dexp:Tg → TG. [2]
It is used to solve systems of linear differential equations. In the theory of Lie groups, the matrix exponential gives the exponential map between a matrix Lie algebra and the corresponding Lie group. Let X be an n×n real or complex matrix. The exponential of X, denoted by e X or exp(X), is the n×n matrix given by the power series = =!
In calculus, the power rule is used to differentiate functions of the form () =, whenever is a real number.Since differentiation is a linear operation on the space of differentiable functions, polynomials can also be differentiated using this rule.
In mathematics, the exponential function can be characterized in many ways. This article presents some common characterizations, discusses why each makes sense, and proves that they are all equivalent. The exponential function occurs naturally in many branches of mathematics. Walter Rudin called it "the most important function in mathematics". [1]
The definition of e x as the exponential function allows defining b x for every positive real numbers b, in terms of exponential and logarithm function. Specifically, the fact that the natural logarithm ln(x) is the inverse of the exponential function e x means that one has = () = for every b > 0.
Ad
related to: how to differentiate exponentialeducation.com has been visited by 100K+ users in the past month
This site is a teacher's paradise! - The Bender Bunch