Search results
Results from the WOW.Com Content Network
A possible null hypothesis is that the mean male score is the same as the mean female score: H 0: μ 1 = μ 2. where H 0 = the null hypothesis, μ 1 = the mean of population 1, and μ 2 = the mean of population 2. A stronger null hypothesis is that the two samples have equal variances and shapes of their respective distributions.
The consistent application by statisticians of Neyman and Pearson's convention of representing "the hypothesis to be tested" (or "the hypothesis to be nullified") with the expression H 0 has led to circumstances where many understand the term "the null hypothesis" as meaning "the nil hypothesis" – a statement that the results in question have ...
An example of Neyman–Pearson hypothesis testing (or null hypothesis statistical significance testing) can be made by a change to the radioactive suitcase example. If the "suitcase" is actually a shielded container for the transportation of radioactive material, then a test might be used to select among three hypotheses: no radioactive source ...
In statistical hypothesis testing, two hypotheses are compared. These are called the null hypothesis and the alternative hypothesis. The null hypothesis is the hypothesis that states that there is no relation between the phenomena whose relation is under investigation, or at least not of the form given by the alternative hypothesis.
As a particular example, if a null hypothesis states that a certain summary statistic follows the standard normal distribution (,), then the rejection of this null hypothesis could mean that (i) the mean of is not 0, or (ii) the variance of is not 1, or (iii) is not normally distributed. Different tests of the same null hypothesis would be more ...
A one-sample Student's t-test is a location test of whether the mean of a population has a value specified in a null hypothesis. In testing the null hypothesis that the population mean is equal to a specified value μ 0, one uses the statistic = ¯ /, where ¯ is the sample mean, s is the sample standard deviation and n is the sample size.
An example can be whether a machine produces more than one-percent defective products. In this situation, if the estimated value exists in one of the one-sided critical areas, depending on the direction of interest (greater than or less than), the alternative hypothesis is accepted over the null hypothesis.
For example, if the observed data X 1, ..., X n are (i) independent, (ii) have a common mean μ, and (iii) have a common variance σ 2, then the sample average X has mean μ and variance . The null hypothesis is that the mean value of X is a given number μ 0.