Search results
Results from the WOW.Com Content Network
C# provides type-safe object-oriented function pointers in the form of delegates. class Program { // Delegate type: delegate int Operation ( int a , int b ); static int Add ( int i1 , int i2 ) { return i1 + i2 ; } static int Sub ( int i1 , int i2 ) { return i1 - i2 ; } static void Main () { // Instantiate the delegate and assign the method to it.
The closest pair of points problem or closest pair problem is a problem of computational geometry: given points in metric space, find a pair of points with the smallest distance between them. The closest pair problem for points in the Euclidean plane [ 1 ] was among the first geometric problems that were treated at the origins of the systematic ...
size_t is an unsigned integer type used to represent the size of any object (including arrays) in the particular implementation. The operator sizeof yields a value of the type size_t . The maximum size of size_t is provided via SIZE_MAX , a macro constant which is defined in the < stdint.h > header ( cstdint header in C++).
Single precision is termed REAL in Fortran; [1] SINGLE-FLOAT in Common Lisp; [2] float in C, C++, C# and Java; [3] Float in Haskell [4] and Swift; [5] and Single in Object Pascal , Visual Basic, and MATLAB. However, float in Python, Ruby, PHP, and OCaml and single in versions of Octave before 3.2 refer to double-precision numbers.
For example, the following algorithm is a direct implementation to compute the function A(x) = (x−1) / (exp(x−1) − 1) which is well-conditioned at 1.0, [nb 12] however it can be shown to be numerically unstable and lose up to half the significant digits carried by the arithmetic when computed near 1.0. [58]
A 2-bit float with 1-bit exponent and 1-bit mantissa would only have 0, 1, Inf, NaN values. If the mantissa is allowed to be 0-bit, a 1-bit float format would have a 1-bit exponent, and the only two values would be 0 and Inf. The exponent must be at least 1 bit or else it no longer makes sense as a float (it would just be a signed number).
A closure-constructing operator creates a function object from a part of the program: the part of code given as an argument to the operator is part of the function, and so is the lexical environment: the bindings of the lexically visible variables are captured and stored in the function object, which is more commonly called a closure.
For expressions, it evaluates to the representation size for the type that would result from evaluation of the expression, which is not performed. For example, since sizeof (char) is defined to be 1 [1] and assuming the integer type is four bytes long, the following code fragment prints 1,4: