enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multilayer perceptron - Wikipedia

    en.wikipedia.org/wiki/Multilayer_perceptron

    In deep learning, a multilayer perceptron (MLP) is a name for a modern feedforward neural network consisting of fully connected neurons with nonlinear activation functions, organized in layers, notable for being able to distinguish data that is not linearly separable.

  3. Hidden layer - Wikipedia

    en.wikipedia.org/wiki/Hidden_layer

    Example of hidden layers in a MLP. In artificial neural networks, a hidden layer is a layer of artificial neurons that is neither an input layer nor an output layer. The simplest examples appear in multilayer perceptrons (MLP), as illustrated in the diagram. [1] An MLP without any hidden layer is essentially just a linear model.

  4. Feedforward neural network - Wikipedia

    en.wikipedia.org/wiki/Feedforward_neural_network

    A multilayer perceptron (MLP) is a misnomer for a modern feedforward artificial neural network, consisting of fully connected neurons (hence the synonym sometimes used of fully connected network (FCN)), often with a nonlinear kind of activation function, organized in at least three layers, notable for being able to distinguish data that is not ...

  5. Perceptron - Wikipedia

    en.wikipedia.org/wiki/Perceptron

    Nonetheless, the learning algorithm described in the steps below will often work, even for multilayer perceptrons with nonlinear activation functions. When multiple perceptrons are combined in an artificial neural network, each output neuron operates independently of all the others; thus, learning each output can be considered in isolation.

  6. Activation function - Wikipedia

    en.wikipedia.org/wiki/Activation_function

    In quantum neural networks programmed on gate-model quantum computers, based on quantum perceptrons instead of variational quantum circuits, the non-linearity of the activation function can be implemented with no need of measuring the output of each perceptron at each layer.

  7. Types of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Types_of_artificial_neural...

    Radial basis functions are functions that have a distance criterion with respect to a center. Radial basis functions have been applied as a replacement for the sigmoidal hidden layer transfer characteristic in multi-layer perceptrons. RBF networks have two layers: In the first, input is mapped onto each RBF in the 'hidden' layer.

  8. Multilayer perceptrons - Wikipedia

    en.wikipedia.org/?title=Multilayer_perceptrons&...

    Multilayer perceptrons. Add languages. Add links. Article; Talk; ... Feedforward neural network#Multilayer perceptron; ... a non-profit organization.

  9. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    The feedforward network (FFN) modules in a Transformer are 2-layered multilayer perceptrons: = (() + ()) + where is its activation function. The original Transformer used ReLU activation. The number of neurons in the middle layer is called intermediate size (GPT), [ 55 ] filter size (BERT), [ 35 ] or feedforward size (BERT). [ 35 ]