Search results
Results from the WOW.Com Content Network
The wave equation is linear in u and is left unaltered by translations in space and time. Therefore, we can generate a great variety of solutions by translating and summing spherical waves. Let φ(ξ, η, ζ) be an arbitrary function of three independent variables, and let the spherical wave form F be a delta function.
While the time-evolution process represented by the Schrödinger equation is continuous and deterministic, in that knowing the wave function at one instant is in principle sufficient to calculate it for all future times, wave functions can also change discontinuously and stochastically during a measurement. The wave function changes, according ...
In de Broglie–Bohm theory, the wavefunction is defined at both slits, but each particle has a well-defined trajectory that passes through exactly one of the slits. The final position of the particle on the detector screen and the slit through which the particle passes is determined by the initial position of the particle.
When where bulk oscillations occur, [7] "The rate of expansion of the hypersynchronization region is determined by an interplay between two key features: (i) the speed c of waves that form and propagate outward from the edge of the region, and (ii) the concave shape of the graph of the activation variable u as it rises, during each bulk ...
The electromagnetic wave equation is a second-order partial differential equation that describes the propagation of electromagnetic waves through a medium or in a vacuum. It is a three-dimensional form of the wave equation. The homogeneous form of the equation, written in terms of either the electric field E or the magnetic field B, takes the form:
Such a decomposition of the delta function into plane waves was part of a general technique first introduced essentially by Johann Radon, and then developed in this form by Fritz John . [63] Choose k so that n + k is an even integer, and for a real number s , put g ( s ) = Re [ − s k log ( − i s ) k !
In quantum mechanics and scattering theory, the one-dimensional step potential is an idealized system used to model incident, reflected and transmitted matter waves.The problem consists of solving the time-independent Schrödinger equation for a particle with a step-like potential in one dimension.
The most general form of a 2×2 Hermitian matrix such as the Hamiltonian of a two-state system is given by = (+), where ,, and γ are real numbers with units of energy. The allowed energy levels of the system, namely the eigenvalues of the Hamiltonian matrix, can be found in the usual way.