enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Logical disjunction - Wikipedia

    en.wikipedia.org/wiki/Logical_disjunction

    In classical logic, disjunction is given a truth functional semantics according to which a formula is true unless both and are false. Because this semantics allows a disjunctive formula to be true when both of its disjuncts are true, it is an inclusive interpretation of disjunction, in contrast with exclusive disjunction .

  3. Affirming a disjunct - Wikipedia

    en.wikipedia.org/wiki/Affirming_a_disjunct

    Venn diagram for "A or B", with inclusive or (OR) Venn diagram for "A or B", with exclusive or (XOR). The fallacy lies in concluding that one disjunct must be false because the other disjunct is true; in fact they may both be true because "or" is defined inclusively rather than exclusively.

  4. Logical connective - Wikipedia

    en.wikipedia.org/wiki/Logical_connective

    For instance in the syntax of propositional logic, the binary connective can be used to join the two atomic formulas and , rendering the complex formula . Common connectives include negation, disjunction, conjunction, implication, and equivalence.

  5. De Morgan's laws - Wikipedia

    en.wikipedia.org/wiki/De_Morgan's_laws

    De Morgan's laws represented with Venn diagrams.In each case, the resultant set is the set of all points in any shade of blue. In propositional logic and Boolean algebra, De Morgan's laws, [1] [2] [3] also known as De Morgan's theorem, [4] are a pair of transformation rules that are both valid rules of inference.

  6. Propositional calculus - Wikipedia

    en.wikipedia.org/wiki/Propositional_calculus

    It deals with propositions [1] (which can be true or false) [10] and relations between propositions, [11] including the construction of arguments based on them. [12] Compound propositions are formed by connecting propositions by logical connectives representing the truth functions of conjunction, disjunction, implication, biconditional, and ...

  7. Boolean algebra - Wikipedia

    en.wikipedia.org/wiki/Boolean_algebra

    A sequence of bits is a commonly used example of such a function. Another common example is the totality of subsets of a set E: to a subset F of E, one can define the indicator function that takes the value 1 on F, and 0 outside F. The most general example is the set elements of a Boolean algebra, with all of the foregoing being instances thereof.

  8. Clause (logic) - Wikipedia

    en.wikipedia.org/wiki/Clause_(logic)

    In logic, a clause is a propositional formula formed from a finite collection of literals (atoms or their negations) and logical connectives.A clause is true either whenever at least one of the literals that form it is true (a disjunctive clause, the most common use of the term), or when all of the literals that form it are true (a conjunctive clause, a less common use of the term).

  9. Horn clause - Wikipedia

    en.wikipedia.org/wiki/Horn_clause

    Conversely, a disjunction of literals with at most one negated literal is called a dual-Horn clause. A Horn clause with exactly one positive literal is a definite clause or a strict Horn clause ; [ 2 ] a definite clause with no negative literals is a unit clause , [ 3 ] and a unit clause without variables is a fact ; [ 4 ] A Horn clause without ...