Search results
Results from the WOW.Com Content Network
This disjunction is problematic because it oversimplifies the choice by excluding viable alternatives. [1] Sometimes a distinction is made between a false dilemma and a false dichotomy. On this view, the term "false dichotomy" refers to the false disjunctive claim while the term "false dilemma" refers not just to this claim but to the argument ...
Venn diagram for "A or B", with inclusive or (OR) Venn diagram for "A or B", with exclusive or (XOR). The fallacy lies in concluding that one disjunct must be false because the other disjunct is true; in fact they may both be true because "or" is defined inclusively rather than exclusively.
In classical logic, disjunction is given a truth functional semantics according to which a formula is true unless both and are false. Because this semantics allows a disjunctive formula to be true when both of its disjuncts are true, it is an inclusive interpretation of disjunction, in contrast with exclusive disjunction .
In linguistics, a disjunct is a type of adverbial adjunct that expresses information that is not considered essential to the sentence it appears in, but which is considered to be the speaker's or writer's attitude towards, or descriptive statement of, the propositional content of the sentence, "expressing, for example, the speaker's degree of truthfulness or his manner of speaking."
(disjunction) [f] If sentences lack any logical connectives, they are called simple sentences, [1] or atomic sentences; [34] if they contain one or more logical connectives, they are called compound sentences, [33] or molecular sentences. [34] Sentential connectives are a broader category that includes logical connectives.
The name "disjunctive syllogism" derives from its being a syllogism, a three-step argument, and the use of a logical disjunction (any "or" statement.) For example, "P or Q" is a disjunction, where P and Q are called the statement's disjuncts. The rule makes it possible to eliminate a disjunction from a logical proof. It is the rule that
In propositional logic, material implication [1] [2] is a valid rule of replacement that allows a conditional statement to be replaced by a disjunction in which the antecedent is negated. The rule states that P implies Q is logically equivalent to not- P {\displaystyle P} or Q {\displaystyle Q} and that either form can replace the other in ...
Of its five connectives, {∧, ∨, →, ¬, ⊥}, only negation "¬" can be reduced to other connectives (see False (logic) § False, negation and contradiction for more). Neither conjunction, disjunction, nor material conditional has an equivalent form constructed from the other four logical connectives.