Search results
Results from the WOW.Com Content Network
The Laplacian matrix of a directed graph is by definition generally non-symmetric, while, e.g., traditional spectral clustering is primarily developed for undirected graphs with symmetric adjacency and Laplacian matrices. A trivial approach to apply techniques requiring the symmetry is to turn the original directed graph into an undirected ...
In spectral graph theory, an eigenvalue of a graph is defined as an eigenvalue of the graph's adjacency matrix, or (increasingly) of the graph's Laplacian matrix due to its discrete Laplace operator, which is either (sometimes called the combinatorial Laplacian) or / / (sometimes called the normalized Laplacian), where is a diagonal matrix with ...
The algebraic connectivity (also known as Fiedler value or Fiedler eigenvalue after Miroslav Fiedler) of a graph G is the second-smallest eigenvalue (counting multiple eigenvalues separately) of the Laplacian matrix of G. [1] This eigenvalue is greater than 0 if and only if G is a connected graph. This is a corollary to the fact that the number ...
In mathematics, the discrete Laplace operator is an analog of the continuous Laplace operator, defined so that it has meaning on a graph or a discrete grid.For the case of a finite-dimensional graph (having a finite number of edges and vertices), the discrete Laplace operator is more commonly called the Laplacian matrix.
Let A be a square n × n matrix with n linearly independent eigenvectors q i (where i = 1, ..., n).Then A can be factored as = where Q is the square n × n matrix whose i th column is the eigenvector q i of A, and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, Λ ii = λ i.
The famous Cheeger's inequality from Riemannian geometry has a discrete analogue involving the Laplacian matrix; this is perhaps the most important theorem in spectral graph theory and one of the most useful facts in algorithmic applications. It approximates the sparsest cut of a graph through the second eigenvalue of its Laplacian.
For large-sized graphs, the second eigenvalue of the (normalized) graph Laplacian matrix is often ill-conditioned, leading to slow convergence of iterative eigenvalue solvers. Preconditioning is a key technology accelerating the convergence, e.g., in the matrix-free LOBPCG method.
The resistance distance between vertices and is proportional to the commute time, of a random walk between and .The commute time is the expected number of steps in a random walk that starts at , visits , and returns to .