Search results
Results from the WOW.Com Content Network
# set terminal svg enhanced size 875 1250 fname "Times" fsize 25 set terminal postscript enhanced portrait dashed lw 1 "Helvetica" 14 set output "bode.ps" # ugly part of something G(w,n) = 0 * w * n + 100000 # 1 / (sqrt(1 + w**(2*n))) dB(x) = 0 + x + 100000 # 20 * log10(abs(x)) P(w) = w * 0 + 200 # -atan(w)*180/pi # Gridlines set grid # Set x axis to logarithmic scale set logscale x 10 set ...
[2] [3] The standard tuning's irregular major-third is replaced by a perfect fourth in all-fourths tuning, which has the open notes E2-A2-D3-G3-C4-F4. [1] [4] The note layouts on the fretboard of a guitar tuned in perfect 4ths, with arrows that show where the same note continues on a higher-pitched string.
It is usually a combination of a Bode magnitude plot, expressing the magnitude (usually in decibels) of the frequency response, and a Bode phase plot, expressing the phase shift. As originally conceived by Hendrik Wade Bode in the 1930s, the plot is an asymptotic approximation of the frequency response, using straight line segments .
A frequency ratio expressed in octaves is the base-2 logarithm (binary logarithm) of the ratio: = An amplifier or filter may be stated to have a frequency response of ±6 dB per octave over a particular frequency range, which signifies that the power gain changes by ±6 decibels (a factor of 4 in power), when the frequency changes by a factor of 2.
Bode plot illustrating phase margin. In electronic amplifiers, the phase margin (PM) is the difference between the phase lag φ (< 0) and -180°, for an amplifier's output signal (relative to its input) at zero dB gain - i.e. unity gain, or that the output signal has the same amplitude as the input.
In this type the derivative (slope) of the wave's amplitude (in sound waves the pressure, in electromagnetic waves, the current) is forced to zero at the boundary. So there is an amplitude maximum (antinode) at the boundary, the first node occurs a quarter wavelength from the end, and the other nodes are at half wavelength intervals from there:
[6] [failed verification] Similar arguments apply to vibrating air columns in wind instruments (for example, "the French horn was originally a valveless instrument that could play only the notes of the harmonic series" [7]), although these are complicated by having the possibility of anti-nodes (that is, the air column is closed at one end and ...
Magnitude response of a low pass filter with 6 dB per octave or 20 dB per decade roll-off. Measuring the frequency response typically involves exciting the system with an input signal and measuring the resulting output signal, calculating the frequency spectra of the two signals (for example, using the fast Fourier transform for discrete signals), and comparing the spectra to isolate the ...